I am trying to prove that for $p\to \infty$ the p-norm:
$$\|x\|_{p}=\Bigl(\sum_{i=1}^{n}|x_i|^{p}\Bigr)^{\frac{1}{p}}$$ we get:
$$\|x\|_{\infty}=\max\{|x_1|\}$$
$$|x_i|\leftarrow_{\infty}(|x_i|^{p})^{\frac{1}{p}}\leq\Bigl(\sum_{i=1}^{n}|x_i|^{p}\Bigr)^{\frac{1}{p}}\leq (p|x_i|^{p})^{\frac{1}{p}}\rightarrow_{\infty}|x_{i}|$$
It is for an arbitrary $i$ so we take the $\max\{|x_1|,|x_2|,...,|x_n|\}?$