It is easier to do it in complex.
To prove that $g(z)$ is holomorphic in the open half-plane $D=\{z:\mathrm{Re}\,z>-1\}$, it is enough to verify that $\oint_{\partial T} g(z)dz=0$ around every triangle $T$ in $D$.
If $T\subset D$ is a triangle, then take $m=\min\limits_{z\in T}\mathrm{Re}\,z>-1$. Then
$$
\int_{t=0}^1 \oint_{z\in\partial T} |f(t)| |t^z| \, |dz|\,dt <
\max|f| \cdot \int_{t=0}^1 \oint_{z\in\partial T} t^{m} \, |dz|\,dt <
\frac{\max|f| \cdot length(\gamma)}{m+1} < \infty,
$$
so we may exchange the integrals as
$$
\oint_{\partial T} g(z)dz =
\oint_{\partial T} \left(\int_{t=0}^1 f(t) t^z dt\right)dz =
\int_{t=0}^1 f(t) \left(\oint_{\partial T} t^z dz\right)dt =
\int_{t=0}^1 f(t) \cdot 0 \,dt = 0.
$$