I understand that most people use the inductive hypothesis, but I find that counterintuitive. Is the below proof correct? In particular, I am concerned with my use of $n$ in (I); is the reason people use another variable, e.g. $k$, for conceptual reasons, or does the use of $n$ create an error in my proof?
\begin{align*} P(0) \land [P(k) \Rightarrow P(k+1)] \implies P(n) \tag{AI} \\ \end{align*}
\begin{align*} \text{When }n = 2, \ \ 2 + 6 + 10 + . . . + (4n - 2) &= 2n^2 \tag{B} \\ 2 + 6 &= 2 \cdot 2^2 \\ 8 &= 8 \\ \end{align*}
$$ \begin{pmatrix} 2 + 6 + 10 + ... + (4n-2) = 2n^2 \\ \Big\Downarrow \\ 2 + 6 + 10 + ... + (4n-2) + (4(n+1)-2) = 2(n+1)^2 \\ \end{pmatrix} \tag{I} $$ \begin{align*} \Big\Updownarrow \end{align*} \begin{align*} 4(n+1)-2 &= 2(n+1)^2 -2n^2 \\ 4n+4-2 &= 2n^2+4n+2 - 2n^2 \\ 4n+2 &= 4n+2 \\ \end{align*}
$$ \text{B} \land \text{I} \land \text{AI} \implies 2 + 6 + 10 + . . . + (4n - 2) = 2n^2 \text{ for } n > 1 \ \ \square $$
Is this alternate solution correct? I am confident in my reasoning, but am unsure if it is a valid mathematical argument.
Pairing $1$st with $n$th term, $2$nd with $(n-1)$th term, etc., yields $\mathbf{\frac{n}{2}}$ pairs: \begin{align*} 2 + (4n-2) \ \ + \ \ 6 + (4(n-1)-2) \ \ + \ \ 10 + (4(n-2)-2) \ \ + \ \ ... &= 2n^2 \\ 2 + (4n-2) \ \ + \ \ 6 + (4n-6) \ \ + \ \ 10 + (4n-10) \ \ + \ \ ... &= 2n^2 \\ 4n \ \ + \ \ 4n \ \ + \ \ 4n \ \ + \ \ ... &= 2n^2 \\ 4n \cdot \mathbf{\frac{n}{2}} &= 2n^2 \\ 2n^2 &= 2n^2 \\ &\ \square \\\ \\ \end{align*}