$S_7$, the symmetric group on 7 letters.
Find the order of $\pi$ where
$$ \pi = \begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 2 & 3 & 7 & 5 & 1 & 4 & 6 \end{bmatrix}$$
its 7 yes?? I am trying to do the permutations but any element of the group is suppose to divide the order of $S_7$?
I am doing the permutations on scratch paper. I am on $\pi^4=$ and its not looking like $e$
Work in progress
computing $\pi * \pi $
$$ \begin{aligned} \pi * \pi =\begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 2 & 3 & 7 & 5 & 1 & 4 & 6 \end{bmatrix} *\begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 2 & 3 & 7 & 5 & 1 & 4 & 6 \end{bmatrix} \end{aligned}$$
$$ \begin{aligned} 1 \to 2 \to 3 \\ 2 \to 3 \to 7 \\3 \to 7 \to 6 \\4 \to 5 \to 1 \\5 \to 1 \to 2 \\6 \to 4 \to 5 \\7 \to 6 \to 9 \end{aligned}$$
making $$ \pi^2= \begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 3 & 7 & 6 & 1 & 2 & 5& 4 \end{bmatrix} $$
computing $\pi^3 $
$$ \pi^3 =\pi^2 * \pi = \begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 7 & 6 & 4 & 2 & 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 2 & 3 & 7 & 5 & 1 & 4 & 6 \end{bmatrix} $$
$$ \begin{aligned} 1 \to 2 \to 7 \\ 2 \to 3 \to 6 \\3 \to 7 \to 4 \\4 \to 5 \to 2 \\5 \to 1 \to 3 \\6 \to 4 \to 1 \\7 \to 6 \to 5 \end{aligned}$$
making $$ \pi^3= \begin{bmatrix} 1& 2 & 3 & 4& 5 & 6 & 7 \\ 7 & 6 & 4 & 2 & 3 & 1 & 5 \end{bmatrix} $$