For $n\in\Bbb Z^+$ let $D_n$ be a countable dense subset of $X_n$, and fix a point $x_n\in D_n$. For $m\in\Bbb Z^+$ let
$$E_m=\left\{y\in\prod_{n\in\Bbb Z^+}D_n:y_n=x_n\text{ for all }n\ge m\right\}\;,$$
and let $$E=\bigcup_{m\in\Bbb Z^+}E_m\;.$$
Then each $$E_m=\prod_{1\le n<m}D_n\times\prod_{n\ge m}\{x_n\}$$ is clearly countable, so $E$ is countable. Every non-empty open set in $X=\prod_{n\in\Bbb Z^+}X_n$ contains a basic open set of the form
$$B=\prod_{1\le n<m}V_n\times\prod_{n\ge m}X_n\;,$$ where $V_n$ is a non-empty open set in $X_n$ for $1\le n<m$, and clearly $B\cap E_m\ne\varnothing$, so $E$ is dense in $X$.