This question stems directly from Converting $\frac{2}{7}$ to a binary number in a $32$ bit computer
I want to check if $x_+$ (increase the value of the last bit by one unit and discard all the bits after the last bit) is closer to $x$ than $x_-$ (discard all bits after the last bit).
$x = (0.\underbrace{100100100100100100100100}_{24 \text{ bits}}10\overline{010} )_{2} \times 2^{-1}$
$x_{-} = 0.\underbrace{100100100100100100100100}_{24 \text{ bits}} \times 2^{-1}$
$ x_+ = \left ((0.\underbrace{10010010010010010010010}_{23\text{ bits}}\mathbf{0})_{2} + 2^{-24} \right )\times 2^{-1} = (0.100100100100100100100101)_{2} \times 2^{-1}$
$$x-x_{-} = 0.\underbrace{0 \cdots 0 }_{24 \text{ zeros}}10\overline{010} \times 2^{-1} = 0.10\overline{010} \times 2^{-25} = \frac{2}{7} \times 2^{-25}$$
$$x_+ - x = 0.\underbrace{1}_{24\text{ th bit in }x_+}00\overline{0} \times 2^{-24} - 0.10010010\overline{010}\times 2^{-24} = 0.1101\overline{101}\times 2^{-25}$$
I don't think I did the $x_+ - x$ calculuation correctly because if I "borrow" from the the 24th bit in $x_+$, then that $24$th bit becomes a $0$. Then how we subtract that $24$th bit in $x_+$ from the $24$th bit in $x$?