Let $n$ be an integer, $n\geq3$ and let $u_1,u_2,...,u_n$ be $n$ linearly independent elements in a vector space over $\Bbb{R}$. Set $u_0=0$ and $u_{n+1}=u_1$. Define $$v_i=u_i+u_{i+1} \;\;\ \text{and}\;\; w_i=u_{i-1}+u_i$$ for $i=1,2,...,n$. Then
a) $v_1,v_2,...,v_n$ is linearly independent if $n=2010$
b) $v_1,v_2,...,v_n$ is linearly independent if $n=2011$
c) $w_1,w_2,...,w_n$ is linearly independent if $n=2010$
d) $w_1,w_2,...,w_n$ is linearly independent if $n=2011$
My attempt:
a) $\{v_1,v_2,...,v_n\}=\{u_1+u_2, u_2+u_3,u_3+u_4,...,u_{2010}+u_{2011}\}$
$u_1+u_2=(u_2+u_3)-(u_3+u_4)+\cdots-(u_{2009}+u_{2010})+(u_{2010}+u_1)$ (subtract all odd terms)
So a) is false
b) $\{v_1,v_2,...,v_n\}=\{u_1+u_2, u_2+u_3,u_3+u_4,...,u_{2011}+u_{2012}\}$
$\alpha_1(u_1+u_2)+\alpha_2(u_2+u_3)+\cdots+\alpha_{2011} (u_{2011}+u_1)=0$ implies
$(\alpha_1+\alpha_{2011})u_1+(\alpha_1+\alpha_2)u_2+\cdots+(\alpha_{2010}+\alpha_{2011}) \;u_{2011}=0$
From this , how can I conclude all coefficients are zero ?
What about others? Any help ?