I stumbled upon the strange representation of integers where $$8=\langle\langle0,\langle0^{\infty}\rangle,0^{\infty}\rangle,0^{\infty}\rangle$$
I'll try explain the representation in a natural way. What I'm wondering -- as is common -- does this idea have a name? Is it well studied? Is it useful? It's certainly fun to play with.
$\textbf{Explanation}$
Naturally all Natural numbers can be represented as their prime decomposition. $$1=2^03^05^0... \quad\quad 2=2^13^05^0... \quad\quad 3=2^03^15^0...$$ $$...$$ $$12=2^23^15^07^0... \quad\quad 13=2^03^05^07^011^013^117^0... \quad\quad 14=2^13^05^07^111^0...$$ $$\text{and so forth...}$$
One could easily use this to represent the integers as endless vectors. The $n$th element corresponds to the power of the $n$th prime in a given prime decomposition. $$1=\langle0^\infty\rangle \quad\quad 2=\langle1,0^\infty\rangle \quad\quad3=\langle0,1,0^\infty\rangle$$ $$...$$ $$12=\langle2,1,0^\infty\rangle \quad\quad 13=\langle0,0,0,0,0,1,0^\infty\rangle \quad\quad 14=\langle1,0,0,1,0^\infty\rangle$$ $$\text{and so forth...}$$
To take it a step further, one could substitute the vector representation of a number wherever that number itself appears in another vector. That is, $$2 \rightarrow \langle1,0^\infty\rangle \rightarrow \langle\langle0^\infty\rangle,0^\infty\rangle$$ $$\text{or}$$ $$8 \rightarrow \langle3, 0^\infty\rangle \rightarrow \langle\langle0,1,0^\infty\rangle, 0^\infty\rangle \rightarrow \langle\langle0,\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle$$ This corresponds to the fact that $$8=2^33^05^0...=2^{(2^03^15^0...)}3^05^0...=2^{(2^03^{(2^03^05^0...)}5^0...)}3^05^0...$$
Now all the Natural numbers can be represented with brackets and zeros $$0 = 0 \quad\quad\quad\quad\quad\quad\quad\quad\ \ \ 5 = \langle0,0,\langle0^\infty\rangle,0^\infty\rangle \quad\quad\quad\quad\quad\quad\quad\ $$ $$1 = \langle0^\infty\rangle \quad\quad\quad\quad\quad\quad\quad\ 6 = \langle\langle0^\infty\rangle,\langle0^\infty\rangle,0^\infty\rangle\quad\quad\quad\quad\quad\quad\ \ \ $$ $$2 = \langle\langle0^\infty\rangle,0^\infty\rangle \quad\quad\quad\quad\quad 7 = \langle0,0,0,\langle0^\infty\rangle,0^\infty\rangle\quad\quad\quad\quad\quad\quad\ \ \ $$ $$3 = \langle0,\langle0^\infty\rangle,0^\infty\rangle \quad\quad\quad\quad\ 8 = \langle\langle0,\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle\quad\quad\quad\quad\quad\quad$$ $$4 = \langle\langle\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle \quad\quad\quad 9 = \langle0,\langle\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle\quad\quad\quad\quad\quad\quad$$ I've been calling these things "corporeal" numbers since they remind me of Conway's Surreal numbers. I'll add down below any extra information about these guys that turns up.
$\textbf{Defenitions}$
$\textbf{Edit}$: These have been rewritten a few times due to new knowledge and the good suggestions of others -- such as https://math.stackexchange.com/q/2356029
The set of corporeal numbers can be defined with set-builder notation $$\mathbb{C}_{\text{orporeal}}=\{ \langle v_1, v_2, v_3, ...\rangle : v_i \in \mathbb{C}_{\text{orporeal}} \}$$
We will also make up some notation for jumping back and forth between the Real numbers and corporeal numbers. $$ [\ ]:\mathbb{R} \rightarrow \mathbb{C}_\text{orporeal} \quad \text{Brackets go from Real to corporeal} $$ $$ \text{Re}: \mathbb{C}_\text{orporeal}\supseteq X \rightarrow \mathbb{R} \quad \text{Re() goes from some corporeals to Real} $$ So for example $$ \text{Re}(\langle\langle0,\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle) = 8 \quad\text{and}\quad [8] = \langle\langle0,\langle0^\infty\rangle,0^\infty\rangle,0^\infty\rangle $$ Note that Re() is only defined for $\textit{some}$ of the corporeal numbers because some don't correspond to any Real number. We'll get to those corporeal numbers further down.
$$\bullet\textbf{ Axioms }\bullet$$
Addition exists $$ 1)\quad \text{If } \alpha \text{ and } \beta \text{ are corporeal numbers, then so is } \alpha + \beta$$
Multiplication is element-wise addition $$2)\quad \text{If } \alpha = \langle ...a_i...\rangle \text{ and } \beta = \langle ...b_i...\rangle \text{ then }$$ $$\alpha \cdot \beta = \langle ... (a_i + b_i) ... \rangle$$
There is a corporeal number for each real number. $$3)\quad \text{If } x \in \mathbb{R} \text{ then } [x] \text{ exists and } [x] \in \mathbb{C}_\text{orporeal}$$
Corporeal numbers model prime decomposition $$4)\quad \text{If } x = 2^{a_1}3^{a_2}5^{a_3}7^{a_4}11^{a_5}... \text{ then}$$ $$[x]=\langle [a_1],[a_2],[a_3],[a_4],[a_5],...\rangle$$
Corporeal numbers maintain the structure of addition and multiplication in the Real numbers. $$5)\quad \text{For } a,b \in \mathbb{R} \quad : \quad [a] + [b] = [a+b] \text{ and } [a]\cdot[b] = [ab]$$
$\textbf{Non-Real numbers}$
We can show there are a few corporeal numbers that don't correspond to any Real number.
First is $\omega$ which we'll call a hard-zero because $\omega + [x] = \omega$. Here's why it exists $$\text{The corporeal number }[0] \text{ exists and contains other corporeal numbers}$$ $$\text{so suppose } [0] = \langle\omega,\omega,\omega,...\rangle$$ $$\text{now we make use of how multiplication was defined}$$ $$ [0]\cdot[n] = [0]$$ $$\Downarrow$$ $$\langle...,\omega,...\rangle\cdot\langle ...,[a_i],...\rangle=\langle...(\omega + [a_i]) ... \rangle = \langle ...,\omega,...\rangle$$ $$\Downarrow$$ $$\text{For any } a_i \in \mathbb{R} \text{ if follows that } \omega + [a_i] = \omega$$
The next number is $\zeta$ which corresponds to an imaginary number. It has the property that $$\text{for some Real number -- say } n \quad : \quad n^\zeta = [-1]$$ $$\text{To see why, first note that } [-1] \text{ exists and must contain at least one non-Real element}$$ $$\text{ accordingly we say that } [-1] = \langle 0,...,0,\zeta,0,...\rangle$$ $$\text{ and we make use of how multiplication was defined again}$$ $$[-1]\cdot[-1]=[1]$$ $$\Downarrow$$ $$\langle [0],...,[0],\zeta,[0],...\rangle \cdot \langle [0],...,[0],\zeta,[0],...\rangle$$ $$||$$ $$\langle [0],...,[0],(\zeta + \zeta),[0],...\rangle$$ $$||$$ $$\langle [0],[0],[0],...\rangle$$ $$\Downarrow$$ $$\zeta + \zeta =[0]$$ The axioms of corporeal numbers aren't strong enough to conclude from here that $\zeta = 0$. We did that on purpose. If $\zeta$ was indeed $0$, then all corporeal numbers would be equal as a consequence. And a number system where all numbers are equal is useless.
The explanation here is that $\zeta$ can correspond to multiple values in the complex numbers. The conclusion -- $\zeta + \zeta =[0]$ -- can be satisfied by picking any complex value and it's conjugate for the left and right $\zeta$ respectively.
$\textbf{So what is Pi?}$
There's a sense in which the product of all prime numbers is $4\pi^2$ https://link.springer.com/article/10.1007%2Fs00220-007-0350-z
Accordingly we will say that $$[4\pi^2]=\langle[1]^\infty\rangle \quad\Leftrightarrow\quad [\pi]=\Big\langle[-1]\cdot\Big[\frac{1}{2}\Big],\Big[\frac{1}{2}\Big]^\infty\Big\rangle = \langle[-1]\cdot\langle[-1],[0]^\infty\rangle,\langle[-1],[0]^\infty\rangle^\infty\rangle$$
But this isn't the only sense in which pi can be defined. Euler found that
$$\frac π 4 = \frac 3 4 \cdot \frac 5 4 \cdot \frac 7 8 \cdot \frac {11} {12} \cdot \frac {13} {12} \cdots$$
where the numerators are the prime numbers starting at $3$ and the denominators are the multiples of $4$ closest to the corresponding prime. (See: https://mathoverflow.net/q/137346 and http://mathworld.wolfram.com/PrimeProducts.html [forumla 33])
Accordingly
$$[\pi]=\langle \sum_{}^{\infty} [-2],[1] - \alpha_1,[1]-\alpha_2,[1]-\alpha_3,...\rangle$$
Where each $\alpha_i$ may be -- as far as I know -- finite or infinite.