Let $F$ be the distribution function of the continuous-type random variable $X$, and assume that $F(x)=0$ for $x \le 0$ and $0 \lt F(x) \lt1$ for $0 \lt x$. Prove that if $P(X \gt x+y |X \gt x)=P(X \gt y),$ then $F(x)=1-e^{- \lambda x}, 0 \lt x.$
My attempt:
Let $F(x)=P(X \le x)$. Then
$ \frac {P(X \gt x+y)}{P(X \gt x)}=P(X \gt y)$
$\Rightarrow \frac {1-P(X\le x+y)}{1-P(X \le x)}=1-p(X \le y)$
$ \Rightarrow \frac {1-F(x+y)}{1-F(x)}=1-F(y)$
Then I have no idea where to go from here. Any help is appreciated.