8

From the integral representation of Airy function $$\mathrm{Ai}(x)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \tau}{2\pi} \exp(-\mathrm{i}\tau x)\exp(-\mathrm{i}\frac{\tau^3}{3}),$$ It is easy to see that $\int_{-\infty}^{\infty} \mathrm{d} x\mathrm{Ai}(x) =1$. However, I am wondering how to find $$\int_{0}^{\infty} \mathrm{d}x \mathrm{Ai}(x).$$ From this website, the result of the above integral is $\frac{1}{3}.$ I could not follow the method in the reference given by that website. Could anyone give an alternative (more straightforward) derivation of $\int_{0}^{\infty} \mathrm{d}x \mathrm{Ai}(x)=\frac{1}{3}$?

ZHW
  • 81

4 Answers4

10

Given the integral representation it follows that $\text{Ai}(x)$ fulfills the differential equation $y''=x y$.
In particular $\text{Ai}(x)$ is an entire function and $$\text{Ai}(x)=\frac{1}{\pi}\int_{0}^{+\infty}\cos\left(\frac{t^3}{3}+xt\right)\,dt \tag{1}$$ $$\begin{eqnarray*}(\mathcal{L}\text{Ai})(s)&=&\frac{1}{\pi}\int_{0}^{+\infty}\int_{0}^{+\infty}\cos\left(\frac{t^3}{3}+xt\right)e^{-sx}\,dt\,dx\\&=&\frac{1}{\pi}\int_{0}^{+\infty}\frac{s\cos\left(\frac{t^3}{3}\right)-t\sin\left(\frac{t^3}{3}\right)}{s^2+t^2}\,dt \tag{2}\end{eqnarray*}$$ It is not difficult to show that $$ \lim_{s\to 0^+}\int_{0}^{+\infty}\cos\left(\frac{t^3}{3}\right)\frac{s\,dt}{s^2+t^2} = \frac{\pi}{2}\tag{3}$$ $$ \lim_{s\to 0^+}\int_{0}^{+\infty}\sin\left(\frac{t^3}{3}\right)\frac{t\,dt}{s^2+t^2} = \frac{\pi}{6}\tag{4}$$ It follows that $$ \int_{0}^{+\infty}\text{Ai}(x)\,dx = \lim_{s\to 0^+}\left(\mathcal{L}\text{Ai}\right)(s) = \frac{1}{\pi}\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=\color{red}{\frac{1}{3}}\tag{5} $$ as wanted.

Mittens
  • 46,352
Jack D'Aurizio
  • 361,689
  • Thank you for your help! Is this method a common technique to evaluate integral from 0 to $\infty$? – ZHW Jun 22 '17 at 18:47
  • @ZHW: I'd say so but I am partial to that: every time I see an integral of the form $\int_{0}^{+\infty}(\ldots),dx$ I think about simplifying it through the Laplace (inverse) transform. – Jack D'Aurizio Jun 22 '17 at 18:49
  • 2
    @JackD'Aurizio Hi Jack. I hope that you're doing well. In the answer I posted, I took a few liberties with formal manipulations without justifying them. It seems you did likewise. So, here is a question. (1) How does one justify the interchange of integration you used in your development? Fubini-Tonelli does not apply here. So, what other ways could one proceed? – Mark Viola Jul 31 '18 at 15:54
  • 1
    The method is deceptively simple but it is not! (a) The change of order of integration needs justification. (b) The conclusion from Laplace transform is not justified (the target integral is shown to be in fact convergent, although it is well known to be the case) (c) the limit for the integral in (4) is not justified (dominated convergence does not apply here since the integrand is not Lebesgue integrable). – Mittens May 25 '23 at 17:16
6

$$\begin{align} \frac1{2\pi}\int_0^L \int_{-\infty}^\infty e^{-itx}e^{-it^3/3}\,dt\,dx&=\frac1{2\pi}\int_{-\infty}^\infty \left(\int_0^L e^{-itx}\,dx \right)\,e^{-it^3/3}\,dt\\\\ &=\frac1{2\pi i}\int_{-\infty}^\infty \left(\frac{1-e^{-iLt}}{t} \right)\,e^{-it^3/3}\,dt\\\\ &=\frac1{\pi }\int_{0}^\infty \frac{\sin(Lt)}{t}\,\cos(t^3/3)\,dt-\frac1{\pi }\int_{0}^\infty \frac{1-\cos(Lt)}{t}\,\sin(t^3/3)\,dt \end{align}$$

It is straightforward (See the analysis in the OP of this question ) to show that

$$\lim_{L\to \infty}\int_{0}^\infty \frac{\sin(Lt)}{t}\,\cos(t^3/3)\,dt=\frac{\pi}{2}$$

and that

$$\lim_{L\to \infty}\int_{0}^\infty \frac{1-\cos(Lt)}{t}\,\sin(t^3/3)\,dt=\frac{\pi}{6}$$

Putting everything together reveals

$$\int_0^\infty \text{Ai}(x)\,dx=\frac13$$

as was to be shown!


Alternatively, we can use distributions and write

$$\begin{align} \frac1{2\pi}\int_0^\infty \int_{-\infty}^\infty e^{-itx}e^{-it^3/3}\,dt\,dx&=\frac1{2\pi}\int_{-\infty}^\infty \left(\int_0^\infty e^{-itx}\,dx \right)\,e^{-it^3/3}\,dt\\\\ &=\frac1{2\pi }\text{PV}\left(\int_{-\infty}^\infty \left(\pi \delta(t)+\frac{1}{it} \right)\,e^{-it^3/3}\,dt\right)\\\\ &=\frac12-\frac1{2\pi }\int_{-\infty}^\infty \frac{\sin(t^3/3)}{t} \,dt\\\\ &=\frac12-\frac16\\\\ &=\frac13 \end{align}$$

as expected!

Mark Viola
  • 184,670
  • Thank you for the help! For those two integrals in your first answer, I suppose the $\lim_{L\rightarrow \infty}$ operation is taken before the integration, in order to get rid of terms with $t^3/3$. Am I correct about this? Besides, may I know more about distributions in your second answer? I am not so familiar with it, but would like to learn more. – ZHW Jun 22 '17 at 19:31
  • You're welcome. The limit is taken after the integration. We cannot bring the limit inside the integral since the limit of the integrand fails to exist. HERE is an article on distributions. – Mark Viola Jun 22 '17 at 19:36
5

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

$\ds{\mrm{Ai}\pars{x} = \int_{-\infty}^{\infty}{\dd\tau \over 2\pi}\,\exp\pars{-\ic\tau x} \exp\pars{-\ic\,{\tau^{3} \over 3}}\,, \qquad\qquad\int_{0}^{\infty}\mrm{Ai}\pars{x}\,\dd x:\ {\large ?}}$.

\begin{align} &\int_{0}^{\infty}\mrm{Ai}\pars{x}\,\dd x = \int_{-\infty}^{\infty}\mrm{H}\pars{x}\mrm{Ai}\pars{x}\,\dd x\qquad\qquad \pars{~\substack{\ds{\mrm{H}:\mathbb{R}\setminus\braces{0} \to \mathbb{R}}} \\[3mm] {Heaviside\ Step\ Function}~} \\[5mm] = &\ \int_{-\infty}^{\infty}\overbrace{\pars{\int_{-\infty}^{\infty} {\expo{\ic \tau x} \over \tau - \ic 0^{+}} \,{\dd \tau \over 2\pi\ic}}}^{\ds{\mrm{H}\pars{x}}}\ \mrm{Ai}\pars{x}\,\dd x\qquad\ \pars{~\substack{\mbox{Note that} \\[2mm] \ds{\left.\vphantom{\Large A}\mrm{H}\pars{x}\right\vert_{\ x\ \not=\ 0} = \lim_{\epsilon \to 0^{+}}\int_{-\infty}^{\infty} {\expo{\ic \tau x} \over \tau - \ic\epsilon} \,{\dd \tau \over 2\pi\ic}}}~} \\[5mm] = &\ \int_{-\infty}^{\infty}{1 \over \tau - \ic 0^{+}} \bracks{\int_{-\infty}^{\infty}\mrm{Ai}\pars{x}\expo{\ic\tau x}\,\dd x} \,{\dd\tau \over 2\pi\ic} = \int_{-\infty}^{\infty}{\exp\pars{-\ic\tau^{3}/3} \over \tau - \ic 0^{+}} \,{\dd\tau \over 2\pi\ic} \\[5mm] = &\ \mrm{P.V.}\int_{-\infty}^{\infty}{\exp\pars{-\ic\tau^{3}/3} \over \tau} \,{\dd\tau \over 2\pi\ic} + {1 \over 2} = -\,{1 \over \pi}\int_{0}^{\infty}{\sin\pars{\tau^{3}/3} \over \tau}\,\dd\tau + {1 \over 2} \\[5mm] \stackrel{\large\tau^{3}/3\ \mapsto\ \tau}{=}\,\,\,& -\,{1 \over 3\pi}\int_{0}^{\infty}{\sin\pars{\tau} \over \tau}\,\dd\tau + {1 \over 2} = -\,{1 \over 3\pi}\,{\pi \over 2} + {1 \over 2} = \bbx{1 \over 3} \end{align}

Felix Marin
  • 94,079
4

I don't know if this is the approach discussed in the reference, but the Airy function $\operatorname{Ai}(x)$ can be expressed in terms of the modified Bessel function of the second kind of order $\pm \frac{1}{3}$:

$$\operatorname{Ai}(x)= \frac{1}{\pi} \sqrt{\frac{x}{3}} K_{\pm 1/3} \left(\frac{2}{3} x^{3/2} \right), \quad x>0 . \tag{1}$$

And an integral representation of the modified Bessel function of the second kind is $$K_{\nu}(x) = \frac{1}{2} \left(\frac{x}{2} \right)^{\nu} \int_{0}^{\infty}\exp\left(-t-\frac{x^{2}}{4t} \right) \, \frac{\mathrm dt}{t^{\nu+1}}, \quad x>0, \tag{2} $$

which can be derived from the integral representation $$K_{\nu}(x) =\int_{0}^{\infty} \exp(-x\cosh t) \cosh(\nu t) \, \mathrm dt = \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-x \cosh t\right) e^{-\nu t} \, \mathrm dt $$ by making the substitution $e^{t}= \frac{2}{x}u$.

Using $(1)$ and $(2)$, and assuming that $a>0$, we have

$$ \begin{align}I(a) &= \int_{0}^{\infty} x^{a-1} \operatorname{Ai}(x) \, \mathrm dx \\ &= \frac{1}{\pi \sqrt{3}}\int_{0}^{\infty} x^{a-1/2} \, K_{1/3}\left(\frac{2}{3}x^{3/2} \right) \, \mathrm dx \\ &=\frac{1}{\pi} \, \frac{3^{2a/3-7/6}}{ 2^{2a/3-2/3}} \int_{0}^{\infty} u^{2a/3-2/3} K_{1/3}(u) \, \mathrm du \\ &= \frac{1}{\pi} \, \frac{3^{2a/3-7/6}}{ 2^{2a/3-2/3}}\int_{0}^{\infty} u^{2a/3-2/3} \, \frac{1}{2} \left(\frac{u}{2} \right)^{1/3} \int_{0}^{\infty} \exp \left(-t - \frac{u^{2}}{4t}\right) \, \frac{\mathrm dt}{t^{4/3}} \, \mathrm du \\ &= \frac{1}{\pi} \, \frac{3^{2a/3-7/6}}{ 2^{2a/3+2/3}}\int_{0}^{\infty}\frac{e^{-t}}{t^{4/3}} \int_{0}^{\infty}u^{2a/3-1/3} \exp \left(- \frac{u^{2}}{4t} \right) \, \mathrm du \, \mathrm dt \tag{1}\\ &= \frac{3^{2a/3-7/6}}{2 \pi}\int_{0}^{\infty} t^{a/3-1} e^{-t} \int_{0}^{\infty} w^{a/3-2/3} e^{-w} \, \mathrm dw \, \mathrm dt \\ &= \frac{3^{2a/3-7/6}}{2 \pi}\Gamma\left(\frac{a+1}{3}\right) \int_{0}^{\infty} t^{a/3-1} e^{-t} \, \, \mathrm dt \\&= \frac{3^{2a/3-7/6}}{2 \pi} \, \Gamma \left(\frac{a+1}{3} \right) \Gamma \left(\frac{a}{3} \right). \end{align}$$


$(1)$ Since the integrand is nonnegative, Tonelli's theorem allows us to change the order of integration.


Therefore, $$\begin{align} \int_{0}^{\infty} \operatorname{Ai}(x) \, \mathrm dx &= I(1) \\ &= \frac{1}{2\pi \sqrt{3}} \, \Gamma \left(\frac{2}{3} \right) \Gamma \left(\frac{1}{3} \right)\\ &= \frac{1}{2 \sqrt{3}} \, \pi \csc \left(\frac{\pi }{3} \right) \\ &=\frac{1}{2 \sqrt{3}} \left(\frac{2}{\sqrt{3}} \right) \\ &= \frac{1}{3}. \end{align}$$


As a side note, if we express $\operatorname{Ai}(x)$ in terms of $K_{-1/3}(z)$ and use $(2)$, we get the integral representation $$ \begin{align} \operatorname{Ai}(x) &= \frac{1}{\pi} \sqrt{\frac{x}{3}} \frac{1}{2} \left(\frac{x^{3/2}}{3} \right)^{-1/3} \int_{0}^{\infty} \exp \left(-t-\frac{x^{3}}{9t} \right) \frac{\mathrm dt}{t^{2/3}} \\ &= \frac{\sqrt{3}}{2 \pi} \int_{0}^{\infty} \exp \left(- \frac{u^{3}}{3} - \frac{x^{3}}{3u^{3}} \right) \, \mathrm du. \end{align}$$