Given a $C^2$ function $f$ which has a Lipschitz gradient, that is,
$ || \nabla f(x) - \nabla f(y) ||_2 \leq L || x - y ||_2$
Can we prove a bound on the largest eigenvalue of $\nabla^2 f$ ?
What does it mean to say -
$ \lim_{x \rightarrow y} \frac{|| \nabla f(x) - \nabla f(y) ||_2}{|| x - y ||_2} \leq L $