Let $E$ be a measurable set with $m(E)< \infty$.Then $L^{\infty}\subset L^p(E)$ for each $p$ with $1\le p\lt \infty$.Furthermore,if $f\in L^{\infty}$,then $$\|f\|_{ \infty}=\lim_{p\to \infty}\|f\|_{ p}$$
.
Proof:Let $f\in L^{\infty}(E)$ and $\mu=\|f\|_{\infty}$
$\implies \vert f(x)\vert^p \le \mu^p$ a.e. on $E$
$\implies \int_E \vert f(x)\vert^p \ dx \le \mu^p.m(E) \lt \infty$ a.e. on $E$
$\implies f\in L^p(E)$
$\implies L^{\infty}(E)\subset \ L^p(E)$.
How to show if $f\in L^{\infty}$,then $\|f\|_{ \infty}=\lim_{p\to \infty}\|f\|_{ p}$?
I've tried hard to prove this. My professor suggested me to use the concept of limit superior,but i'm failing to make that idea practical.I know it is easy as it is consequence of above result but i'm lacking somewhere.So it will be heplful to give the detailed explanation of proof.
Thank you!
This is Davide Giraudo's answer for Limit of $L^p$ norm
Fix $\delta>0$ and let $S_\delta:=\{x,|f(x)|\geqslant \lVert f\rVert_\infty-\delta\}$ for $\delta<\lVert f\rVert_\infty$. We have $$\lVert f\rVert_p\geqslant \left(\int_{S_\delta}(\lVert f\rVert_\infty-\delta)^pd\mu\right)^{1/p}=(\lVert f\rVert_\infty-\delta)\mu(S_\delta)^{1/p},$$ since $\mu(S_\delta)$ is finite and positive. This gives $$\liminf_{p\to +\infty}\lVert f\rVert_p\geqslant\lVert f\rVert_\infty.$$ As $|f(x)|\leqslant\lVert f\rVert_\infty$ for almost every $x$, we have for $p>q$, $$ \lVert f\rVert_p\leqslant\left(\int_X|f(x)|^{p-q}|f(x)|^qd\mu\right)^{1/p}\leqslant \lVert f\rVert_\infty^{\frac{p-q}p}\lVert f\rVert_q^{q/p},$$ giving the reverse inequality.
My question is how $\left(\int_X|f(x)|^{p-q}|f(x)|^qd\mu\right)^{1/p}\leqslant \lVert f\rVert_\infty^{\frac{p-q}p}\lVert f\rVert_q^{q/p}$ happened?