The following is from page 31 of Stein and Shakarchi's Real Analysis. My question is about an aspect of the proof of the following theorem.
Theorem 4.1 Suppose $f$ is a non-negative measurable function on $\mathbb R^d$. Then there exists an increasing sequence of non-negative simple functions $\{\varphi_k\}_{k=1}^\infty$ that converges pointwise to $f$, namely, $$ \varphi_k(x) \le \varphi_{k+1}(x)\quad\text{and}\quad\lim_{k\to\infty}\varphi_k(x)=f(x),\ \text{for all $x$.} $$ Proof. We begin first with a truncation. For $k\ge 1$, let $Q_k$ denote the cube centered at the origin and of side length $k$. Then we define $$ F_k(x) = \begin{cases} f(x) & \text{if $x\in Q_k$ and $f(x)\le k$,} \\ k & \text{if $x\in Q_k$ and $f(x)> k$,}\\ 0 & \text{otherwise.} \end{cases} $$ Then $F_k(x)\to f(x)$ as $k$ tends to infinity for all $x$. Now, we partition the range of $F_k$, namely $[0,k]$ as follows. For fixed $k,j\ge 1$, we define $$ E_{\ell,j}=\left\{x\in Q_k:\frac{\ell}{j}<F_k(x)\le\frac{\ell+1}{j}\right\},\quad\text{for}\ 0\le\ell<kj. $$ Then we may form $$ F_{k,j}(x) = \sum_{\ell=0}^{kj-1}\frac{\ell}{j}{\large{\chi_{E_{\ell,j}}}}(x) $$ [where $\large{\chi_{E_{\ell,j}}}$ is the indicator function of $E_{\ell,j}$].
Each $F_{k,j}$ is a simple function that satisfies $0\le F_k(x)-F_{k,j}(x)\le 1/j$ for all $x$. If we now choose $j=k$, and let $\varphi_k = F_{k,k}$, then we see that $0\le F_k(x)-\varphi_k(x)\le 1/k$ for all $x$, $\color{red}{\underline{\color{black}{\text{and $\{\varphi_k\}$ satisfies all the desired properties.}}}}$
I do not see why $\varphi_k(x)\le\varphi_{k+1}(x)$ for all $x$. Can someone explain that?