$$
\mathbf{A} = \mathbf{U} \, \Sigma \, \mathbf{V}^{*}, \qquad
\mathbf{A}^{+} = \mathbf{U} \, \Sigma^{+} \, \mathbf{V}^{*}
$$
$\Sigma$ gymnastics
The problem distills down to an exercise in $\Sigma$ gymnastics. The diagonal matrix $\mathbf{S}$ contains the ordered singular values has size $\rho \times \rho.$ Note $\mathbf{S}^{T} = \mathbf{S}.$ The inverse matrix has reciprocal values on the diagonal.
First step:
$$
\begin{align}
\Sigma =
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{m\times n}, \qquad
%
\Sigma^{T} =
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{n\times m}, \qquad
%
\Sigma^{+} =
\left[ \begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{n\times m}
%
\end{align}
$$
Second step:
$$
\begin{align}
\Sigma \, \Sigma^{T} =
\left[ \begin{array}{cc}
\mathbf{S}^{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{m\times m}, \qquad
%
\Sigma^{T} \, \Sigma &=
\left[ \begin{array}{cc}
\mathbf{S}^{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{n\times n}
%
\end{align}
$$
Third step:
$$
\begin{align}
\Sigma \, \Sigma^{+} =
\left[ \begin{array}{cc}
\mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{m\times m}, \qquad
%
\Sigma^{+} \, \Sigma &=
\left[ \begin{array}{cc}
\mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{n\times n}
%
\end{align}
$$
Fourth step:
$$
\begin{align}
\Sigma \, \Sigma^{+} \, \Sigma &=
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{m\times n} = \Sigma, \qquad
%
\Sigma^{+} \, \Sigma \, \Sigma^{+} =
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]_{n\times m} = \Sigma^{+}
%
\end{align}
$$
a
$$
\begin{align}
\mathbf{A} \, \mathbf{A}^{+} \, \mathbf{A} &=
% A
\left(
\mathbf{U} \, \Sigma \, \mathbf{V}^{*}
\right)
% A
\left(
\mathbf{V} \, \Sigma^{+} \, \mathbf{U}^{*}
\right)
% A+
\left(
\mathbf{U} \, \Sigma \, \mathbf{V}^{*}
\right) \\
%
& = \mathbf{U} \, \Sigma \, \Sigma^{+} \, \Sigma \, \mathbf{V}^{*} \\
%
& = \mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
& = \mathbf{A}
%
\end{align}
$$
b
$$
\begin{align}
\mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+}
& = \mathbf{V} \, \Sigma^{+} \, \Sigma \, \Sigma^{+} \, \mathbf{U}^{*} \\
& = \mathbf{V} \, \Sigma^{+} \, \mathbf{U}^{*} \\
%
& = \mathbf{A}^{+}
%
\end{align}
$$
c
$$
\begin{align}
\left( \mathbf{A} \, \mathbf{A}^{+} \right)^{*} &=
% A
\left(
\mathbf{U} \, \Sigma \, \Sigma^{+} \, \mathbf{U}^{*}
\right)^{*} \\
% A
&=
\left(
\mathbf{U} \,
\left[ \begin{array}{cc}
\mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
\, \mathbf{U}^{*}
\right)^{*} \\
&=
\mathbf{U} \,
\left[ \begin{array}{cc}
\mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
\, \mathbf{U}^{*} \\
&= \mathbf{A} \, \mathbf{A}^{\dagger}
%
\end{align}
$$
d
$$
\begin{align}
\left( \mathbf{A}^{+} \, \mathbf{A} \right)^{*} &=
% A
\left(
\mathbf{V} \, \Sigma^{+} \, \Sigma \, \mathbf{V}^{*}
\right)^{*} \\
% A
&=
\mathbf{V} \,
\left[ \begin{array}{cc}
\mathbf{I}_{\rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
\, \mathbf{V}^{*} \\
&= \mathbf{A}^{+} \, \mathbf{A}
%
\end{align}
$$