First, it's follows very quickly that the conditional distribution is normal.
$X = (X_1, ..., X_n) \sim N(0, B)$
So the joint pdf. is $f_X(x) = const_1. e^{-\frac{1}{2}x'B^{-1}x}$, where $const_1=\frac{1}{(2\pi)^{n/2}B^{1/2}}$.
We then have -
$$
\begin{array}{rcl}f_{X_1|X_2,...,X_n}(x_1|x_2, ..., x_n)
&=&\frac{f_{X_1,X_2,...,X_n}(x_1,...,x_n)}{f_{X_2,...,X_n}(x_2,...,x_n)}\\
&=&\frac{const_1.e^{-\frac{1}{2}x'B^{-1}x}}{f_{X_2,...X_n}(x_2,...,x_n)}\\
&=&const_2.e^{-\frac{1}{2}x'B^{-1}x}
\end{array}$$
Note 1: $const_2=\frac{const_1}{f_{X_2,...,X_n}(x_2,...,x_n)}$ is actually determined by $x_2,...,x_n$. But it is useful to think of it as a constant as far as the pdf of $x_1$ is concerned.
Note 2: Since this is a pdf, $const_2(x_2,...,x_n)$ is such that the total integral is 1. This is useful, and enables us to loose track of it as we can recover this anytime by just integrating this over $x_1$, since $const_2 = 1/\int_{x_1}e^{-\frac{1}{2}x'Bx}$.
Say $B^{-1}=D=\left(\begin{matrix}D_{11}&D_{12}&...&D_{1n}\\D_{21}&D_{22}& ...& D_{2n}\\&&...&\\ D_{n1}&D_{n2}&...&D_{nn}\end{matrix}\right)$.
Then note that $x'B^{-1}x=x_1^2D_{11}+2x_1 \sum_{r=2}^n D_{1r}x_r + \sum_{r=2}^n \sum_{s=2}^n x_r x_s D_{rs}$. This shows that the distribution of $X_1$ is indeed normal.
Moreover, we can also read off the distribution's mean and variance -
$$\begin{array}{rcl}x'B^{-1}x&=&x_1^2D_{11}+2x_1 \sum_{r=2}^n D_{1r}x_r + \sum_{r=2}^n \sum_{s=2}^n x_r x_s D_{rs}\\
&=&\frac{(x_1-\mu)^2}{\sigma^2} + c
\end{array}$$
Where $\sigma = 1/\sqrt{D_{11}}$, $\mu=-\frac{\sum_{r=2}^n D_{1r}x_r}{\sqrt{D_{11}}}$.
The full distribution $f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n)$ is thus -
$$\begin{array}{rcl}
f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n)
&=&const_2.e^{-\frac{(x_1-\mu)^2}{2\sigma^2} + c}\\
&=&const_2.e^c.e^{-\frac{(x_1-\mu)^2}{2\sigma^2}}\\
\end{array}$$
So the conditional pdf is univariate normal $N\left(-\frac{\sum_{r=2}^n D_{1r}x_r}{\sqrt{D_{11}}}, \frac{1}{D_{11}}\right)$, where $D=B^{-1}$.