Wikipedia

Example
Define matrices
$$
\mathbf{A} =
\left[
\begin{array}{cc}
0 & 1 \\
3 & 2 \\
0 & 2 \\
\end{array}
\right]
, \quad
%
\mathbf{B} =
\left[
\begin{array}{ccc}
0 & 3 & 0 \\
1 & 2 & 2 \\
\end{array}
\right]
, \quad
%
\mathbf{C} = \mathbf{A} \mathbf{B} =
\left[
\begin{array}{rrr}
1 & 2 & 2 \\
2 & 13 & 4 \\
2 & 4 & 4 \\
\end{array}
\right]
$$
$$
\mathbf{A}^{\dagger} = \frac{1}{15}
\left[
\begin{array}{rrr}
-2 & 5 & -4 \\
3 & 0 & 6 \\
\end{array}
\right]
, \quad
%
\mathbf{B}^{\dagger} = \frac{1}{15}
\left[
\begin{array}{rr}
-2 & 3 \\
5 & 0 \\
-4 & 6 \\
\end{array}
\right]
, \quad
%
\mathbf{C}^{\dagger} = \frac{1}{225}
\left[
\begin{array}{rrr}
13 & -10 & 26 \\
-10 & 25 & -20 \\
26 & -20 & 52 \\
\end{array}
\right]
$$
Test premise
Does $\mathbf{C}^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$?
$$
\begin{align}
\mathbf{B}^{\dagger}\mathbf{A}^{\dagger} &= \frac{1}{15}
\left[
\begin{array}{rr}
-2 & 3 \\
5 & 0 \\
-4 & 6 \\
\end{array}
\right]
\frac{1}{15}
\left[
\begin{array}{rrr}
-2 & 5 & -4 \\
3 & 0 & 6 \\
\end{array}
\right] \\[3pt]
%%
& =
%%
\frac{1}{225}
\left[
\begin{array}{rrr}
13 & -10 & 26 \\
-10 & 25 & -20 \\
26 & -20 & 52 \\
\end{array}
\right] \\
&= \mathbf{C}^{\dagger}
\end{align}
$$
Conclusion
$$\therefore \qquad \left(\mathbf{A}\mathbf{B}\right)^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$$