$$ \int\limits_0^{+\infty} e^{-a^2x^2-\frac{b^2}{x^2}} dx$$
I'm stuck after doing this:
$$ I = e^{-2ab}\int\limits_0^{+\infty} e^{-(ax-\frac{b}{x})^2} dx$$
$$ \int\limits_0^{+\infty} e^{-a^2x^2-\frac{b^2}{x^2}} dx$$
I'm stuck after doing this:
$$ I = e^{-2ab}\int\limits_0^{+\infty} e^{-(ax-\frac{b}{x})^2} dx$$
After doing that, set $x=z\sqrt{\frac{b}{a}},\;dx = dz\sqrt{\frac{b}{a}}$ and apply Glasser's master theorem or just the
Lemma. If $f\in L^1(\mathbb{R})$, $$ \int_{-\infty}^{+\infty}f(x)\,dx = \int_{-\infty}^{+\infty}f\left(x-\frac{1}{x}\right)\,dx.$$
For completeness
Rewrite the integral as $$ \begin{aligned} \int_0^{\infty} e^{-a x^2-\frac{b^2}{x^2}} d x = & \frac{1}{2} \int_{-\infty}^{\infty} e^{-\left(a x-\frac{b}{x}\right)^2-2 a b} d x \\ = & \frac{1}{2} e^{-2 a b} \int_{-\infty}^{\infty} e^{-\left(a x-\frac{b}{x}\right)^2} d x \end{aligned} $$ As suggested by Jack D'Aurizio, using the substitution $x=y \sqrt{\frac{b}{a}}$, we have $$ \begin{aligned} \int_0^{\infty} e^{-a x^2-\frac{b^2}{x^2}} d x & =\frac{1}{2} e^{-2 a b} \int_{-\infty}^{\infty} e^{-\left(\sqrt{a b} y-\frac{\sqrt{a b}}{y}\right)^2} \sqrt{\frac{b}{a}} d y\\ & =\frac{1}{2} \sqrt{\frac{b}{a}} e^{-2 a b} \int_{-\infty}^{\infty} e^{-a b\left(y-\frac{1}{y}\right)^2} d y \\ & =\frac{1}{2} \sqrt{\frac{b}{a}} e^{-2 a b} \int_{-\infty}^{\infty} e^{-(\sqrt{a b} y)^2} d y \quad \cdots (*)\\ & =\frac{1}{2} \sqrt{\frac{b}{a}} e^{-a b} \cdot \frac{\sqrt{\pi}}{\sqrt{a b} } \\ & =\frac{\sqrt{\pi}}{2 a} e^{-a b} \end{aligned} $$ where $(*)$ uses the result in the post.