Here is a simple way to see it. Let $S$ be geometric Brownian motion
(so that $dS=\mu S\,dt+\sigma S\,dB_{t}$) and define $\phi=u_s(S,t)=\partial_s u(S,t)$.
Use Ito's Lemma:
$$
d\phi=\underbrace{\left( u_{st} +\mu S u_{ss} + \frac{\sigma^2S^2}{2}u_{sss} \right)}_{\displaystyle\Psi}dt + \sigma S u_{ss}\,dB_t
$$
Then use the rules for stochastic differentials (see here and here) to get:
\begin{align}
dS\,d\phi &= (\Psi dt + \sigma u_{ss}\,dB_t)(\mu S dt + \sigma S\,dB_t)\\[1.7mm]
&= \Psi\mu\underbrace{dt\,dt}_0 \;+\, \sigma\mu\underbrace{dB_t\,dt}_0 \;+\, \Psi\sigma S\underbrace{dt\,dB_t}_0\,+\, u_{ss}\sigma S\sigma S \underbrace{(dB_t)^2}_{dt}\\
&= \sigma^2S^2 u_{ss} \,dt
\end{align}