I need help understanding this proof that a Cauchy sequence is convergent.
Let $(a_n)_n$ be a Cauchy sequence. Let's prove that $(a_n)_n$ is bounded. In the definition of Cauchy sequence: $$(\forall \varepsilon>0) (\exists n_\varepsilon\in\Bbb N)(\forall n,m\in\Bbb N)((n,m>n_\varepsilon)\Rightarrow(|a_n-a_m|<\varepsilon))$$ let $\varepsilon=1$. Then we have $n_1\in\Bbb N$ such that $\forall n,m\in\Bbb N (n,m>n_1)\Rightarrow(|a_n-a_m|<1)$. From there for $n>n_1$ we have $|a_n|\leq |a_n-a_{n1+1}|+|a_{n1+1}|(*).$ Now $M=\max\{|a_1|,...|a_{n1}|,1+|a_{n1+1}|\}$ such that $|a_n|\leq M,\ \forall n\in\Bbb N.$
Bounded sequence $(a_n)_n$ has a convergent subsequence $(a_{p_n})_n$, i.e. there exists $a=\lim_n a_{p_n}$. Let's prove $a=\lim_n a_n$. Let $\varepsilon>0$ be arbitrary. From the convergence of subsequence $(a_{p_n})_n$ we have $n'_\varepsilon\in\Bbb N$ such that $$(n>n'_\varepsilon)\Rightarrow(|a_{p_n}-a|<\frac{\varepsilon}{2}).$$ Because $(a_n)_n$ is a Cauchy sequence, we have $n''_\varepsilon\in\Bbb N$ such that $$(n,m>n''_\varepsilon)\Rightarrow(|a_n-a_m|<\frac{\varepsilon}{2}).$$ Let $n_\varepsilon=\max\{n'_\varepsilon, n''_\varepsilon\}$ so for $n>n_\varepsilon$ because $p_n\geq n$ we have
$$|a_n-a|\leq|a_n-a_{p_n}|+|a_{p_n}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \ (**)$$ i.e. $a=\lim_n a_n$.
$(*)$Where did $|a_n|\leq |a_n-a_{n1+1}|+|a_{n1+1}|$ come from? I understand why that inequality is true, but I don't see the point in writing in like that.
$(**)$ Why is $|a_n-a_{p_n}|<\frac{\varepsilon}{2}?$