It is an open problem whether the fractional part of $\left(\dfrac32\right)^n$ is dense in $[0...1]$.
The problem is: is $1$ a limit point of the above sequence?
An equivalent formulation is: $\forall \epsilon > 0: \exists n \in \Bbb N: 1 - \{1.5^n\} < \epsilon$ where $\{x\}$ denotes the fractional part of $x$.
Here is a table of $n$ against $\epsilon$ that I computed:
$\begin{array}{|c|c|}\hline \epsilon & n \\\hline 1 & 1 \\\hline 0.5 & 5 \\\hline 0.4 & 8 \\\hline 0.35 & 10 \\\hline 0.3 & 12 \\\hline 0.1 & 14 \\\hline 0.05 & 46 \\\hline 0.01 & 157 \\\hline 0.005 & 163 \\\hline 0.001 & 1256 \\\hline 0.0005 & 2677 \\\hline 0.0001 & 8093 \\\hline 0.00001 & 49304 \\\hline 0.000005 & 158643 \\\hline 0.0000005 & 835999 \\\hline \end{array}$
References
- Unsolved Problems, edited by O. Strauch, in section 2.4 Exponential sequences it is explicitly mentioned that both questions whether $(3/2)^n\bmod 1$ is dense in $[0,1]$ and whether it is uniformly distributed in $[0,1]$ are open conjectures.
- Power Fractional Parts, on Wolfram Mathworld, "just because the Internet says so"
