If $\lambda_1$ an eigenvalue of $A$ with associated eigenvector $u_1$ (unitary), we can get an orthonormal basis of $\mathbb{C}^3:$ $B=\left\{u_1,u_2,u_3\right\}$ so, $U_1=\begin{bmatrix}u_1,u_2,u_3\end{bmatrix}$ is an unitary matrix. Besides $Au_1=\lambda_1u_1$, hence $$AU_1=A\begin{bmatrix}u_1,u_2,u_3\end{bmatrix}=\begin{bmatrix}\lambda_1u_1,Au_2,Au_3\end{bmatrix}$$ $$=\begin{bmatrix}u_1,u_2,u_3\end{bmatrix}\begin{bmatrix} \lambda_1 & * & * \\ 0 & * & *\\ 0 & * & * \end{bmatrix}=U_1\left[\begin{array}{c|c}
\lambda_1 & b_1 \\ \hline
0 & A_1
\end{array}
\right].$$ That is, $$U_1^{-1}AU_1=\left[\begin{array}{c|c}
\lambda_1 & b_1 \\ \hline
0 & A_1
\end{array}
\right],\text{ with } U_1 \text{ unitary and } A_1\in\mathbb{C}^{2\times 2}.$$ If you find $M_2\in \mathbb{C}^{2\times 2}$ unitary such that $M_2^{-1}A_1M_2=\begin{bmatrix} \lambda_2 & t_{12} \\ 0 & \lambda_3 \\\end{bmatrix},$ define $$U_2=\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2
\end{array}
\right].$$ $U_2$ is unitary and $$\left(U_1U_2\right)^{-1}A\left(U_1U_2\right)=U_2^{-1}U_1^{-1}AU_1U_2$$ $$=\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2^{-1}
\end{array}
\right]U_1^{-1}AU_1\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2
\end{array}
\right]$$ $$=\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2^{-1}
\end{array}
\right]\left[\begin{array}{c|c}
\lambda_1 & b_1 \\ \hline
0 & A_1
\end{array}
\right]\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2
\end{array}
\right]$$ $$=\left[\begin{array}{c|c}
\lambda_1 & b_1 \\ \hline
0 & M_2^{-1}A_1
\end{array}
\right]\left[\begin{array}{c|c}
1 & 0 \\ \hline
0 & M_2
\end{array}
\right]=\left[\begin{array}{c|c}
\lambda_1 & b_1M_2 \\ \hline
0 & M_2^{-1}A_1M_2
\end{array}
\right]$$
$$=\begin{bmatrix} \lambda_1 & s_{12} & s_{1n}\\ 0 & \lambda_2 & s_{2n} \\ 0 & 0 &\lambda_3\end{bmatrix}=T.$$ The matrix $U=U_1U_2$ is unitary (product of unitary matrices), as a consequence $U^{-1}AU$ $=$ $U^*AU=T$ with $T$ triangular.