We want to be able to compute discrete logarithms with basis $a = 89$ in $\mathbb{Z}^*_p$ for $p = 1235789.$ We choose the factor base $B = {−1, 2, 3, 5, 7, 11, 13, 17, 19, 23}$. With the first step of Index Calculus algorithm I get this system of linear equations.
\begin{bmatrix}0&3& 0& 2& 0& 0& 2 & 0 & 0 & 1 & 100058\\ 1&1&1&0&0&0&1&0&0&3&100131\\0&4&3&0 & 0 & 1 & 0 & 0 & 1 & 0 & 100152 \\ 1 & 6 & 3 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 100232\\ 1 &2 &3 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 100343 \\ 1 & 2 & 7 & 0 & 1 & 0 & 1 &0 & 0 & 0 & 100360\\ 1 & 5 & 2 & 1 & 2 & 0 & 0 &1 & 0 & 0 & 100385\\ 1 & 6 & 2 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 100401\\ 0 & 0 & 4 & 0 & 3 & 0 & 0 & 1 & 0 & 0 & 100412\\ 0 & 0 & 5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 100428 \end{bmatrix}
Then I use Gauss's elimination to solve the equations.
\begin{bmatrix} 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& -494241/70\\ 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 250358/35\\ 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 250358/35\\ 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& -1749/10\\ 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 498777/35\\ 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 1000837/70\\ 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 2015443/70\\ 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 1016657/35\\ 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 2504791/70\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 747756/35\\\end{bmatrix}
I'm having problems understanding why is my solution of linear equations not correct?
Edit: What is the correct way to use guass's elimination with$\mod p - 1$?