Can somebody give mi idea, how to solve this integral?
$$\int_{0}^{\pi/4} \frac{\sin x}{\sin x + \cos x} \, dx$$
Can somebody give mi idea, how to solve this integral?
$$\int_{0}^{\pi/4} \frac{\sin x}{\sin x + \cos x} \, dx$$
Define $I$ = $\int_{0}^{\pi/4} \frac{\sin x}{\sin x + \cos x} \, dx$ and $J$ = $\int_{0}^{\pi/4} \frac{\cos x}{\sin x + \cos x} \, dx$
Now, what about $J$ + $I$ and $J$ - $I$ ?
Can you get it from here?
Writting $\sin x+\cos x = \sqrt{2}\sin \left(\frac{\pi}{4}+x\right)$, the integral can be written as $$\frac{1}{\sqrt 2}\int_{0}^{\pi/4}\frac{\sin x}{\sin(\pi/4+x)}\,\mathrm{d}x=\frac{1}{\sqrt 2}\int_{\pi/2}^{\pi/4}\frac{\sin(\pi/4-u)}{\sin u}\,\mathrm{d}u=\frac{1}{2}\int_{\pi/2}^{\pi/4}\frac{1}{\tan u}\,\mathrm{d}u+\frac{\pi}{8},$$ where we used $\sin(\pi/4-u) = \frac{\sqrt{2}}{2}(\cos u - \sin u)$ in the last equality.
Hint:
$$\frac{\sin x}{\sin x + \cos x}=\frac{1}{2}(\tan 2x - \sec 2x+1)$$
Proof:
$$\frac{\sin x}{\sin x + \cos x}=\frac{\sin x(\cos x-\sin x)}{\cos 2x}=\frac{1}{2}\frac{\sin 2x+\cos 2x -1}{\cos 2x}=\frac{1}{2}(\tan 2x - \sec 2x+1)$$
Now integrate $\tan 2x$, $\sec 2x$ and $1$.