As Matthew Conroy mentions in a comment, this is related to the Coupon Collector's Problem. I am not sure if this distribution has a name, but here is a derivation of the probability given in the question.
Probability of Completion on the $\boldsymbol{m^\text{th}}$ Trial
Let $S_j$ be the set of arrangements where $j$ has not been chosen after $m$ trials. The sum of the probabilities of all intersections of $k$ of the $S_j$'s is
$$
\overbrace{\ \ \ \binom{n}{k}\ \ \ }^{\substack{\text{number of ways}\\\text{to choose $k$}\\\text{particular numbers}}}\overbrace{\left(1-\frac kn\right)^m}^{\substack{\text{probability of}\\\text{$k$ particular}\\\text{numbers not}\\\text{being chosen}\\\text{after $m$ trials}}}
$$
Inclusion-Exclusion says that the probability of not getting some number after $m$ trials is
$$
\sum_{k=1}^n(-1)^{k-1}\binom{n}{k}\left(1-\frac kn\right)^m
$$
Thus, the probability of getting the last number on the $m^\text{th}$ trial is
$$
\begin{align}
&\sum_{k=1}^n(-1)^{k-1}\binom{n}{k}\left[\left(1-\frac kn\right)^{m-1}-\left(1-\frac kn\right)^m\right]\\
&=\sum_{k=1}^n(-1)^{k-1}\binom{n}{k}\frac kn\left(1-\frac kn\right)^{m-1}\\
&=\bbox[5px,border:2px solid #C0A000]{\sum_{k=1}^n(-1)^{k-1}\binom{n-1}{k-1}\left(1-\frac kn\right)^{m-1}}
\end{align}
$$
Expected Duration (Using the Formula Above)
We can compute the expected duration using the formula above
$$
\begin{align}
&\sum_{m=1}^\infty\sum_{k=1}^n(-1)^{k-1}\binom{n-1}{k-1}m\left(1-\frac kn\right)^{m-1}\\
&=\sum_{k=1}^n(-1)^{k-1}\binom{n-1}{k-1}\frac1{\left(1-\left(1-\frac kn\right)\right)^2}\\
&=n\sum_{k=1}^n(-1)^{k-1}\binom{n}{k}\frac1k\\
&=n\sum_{k=1}^n(-1)^{k-1}\sum_{j=k}^n\binom{j-1}{k-1}\frac1k\\
&=n\sum_{j=1}^n\sum_{k=1}^j(-1)^{k-1}\binom{j}{k}\frac1j\\
&=n\sum_{j=1}^n\frac1j\\[6pt]
&=\bbox[5px,border:2px solid #C0A000]{nH_n}
\end{align}
$$
Expected Duration (Summing Expected Durations)
If a stream of independent events occurs, each with probability of success $p$, the expected number of events until a success is $\frac1p$. The probability of picking a new number after we have picked $k$ distinct numbers is $\frac{n-k}{n}$. Therefore, the duration after we've picked $k$ distinct numbers until we pick the $k+1^\text{st}$ number is $\frac{n}{n-k}$. Thus, the expected duration until we pick all numbers is
$$
\begin{align}
\sum_{k=0}^{n-1}\frac{n}{n-k}
&=\sum_{k=1}^n\frac nk\\
&=\bbox[5px,border:2px solid #C0A000]{nH_n}
\end{align}
$$