Evaluate the integral : $$\int_0^1 \frac{\log(1+x)}{x}dx$$ It is an improper integral & I tried it by substituting $\log(1+x)=z$ . But it does not open any way to evaluate it.
- 8,108
- 13,252
-
2Taylor series for $\ln (1+x)$ around $x=0$ is the way to go – Yuriy S Nov 25 '16 at 08:35
-
The integral can be reduced to gamma functions by substitutions.Contour integral is also another choice – vidyarthi Nov 25 '16 at 08:40
-
@vidyarthi By which substitution it reduce to gamma function? – Empty Nov 25 '16 at 08:43
-
the result should be $$\frac{\pi^2}{12}$$ – Dr. Sonnhard Graubner Nov 25 '16 at 08:44
-
this must be duplicate here ... – Math-fun Nov 25 '16 at 08:48
-
See this link:https://en.wikipedia.org/wiki/Polylogarithm- for detailed discussion of general class of such integrals, and their expressibility with special functions. Your problem reduces to dilogarithm on substitution of $u=-x$ – vidyarthi Nov 25 '16 at 09:07
-
Do you know anything about contour integral in complex analysis? – Vim Nov 25 '16 at 09:16
-
1Just use the Dilogarithm $\operatorname{Li}_2(x)=-\int \frac{\ln(1-x)}{x}dx$ With a substitution you get your (indefinite) integral to be $-\operatorname{Li}_2(-x)$ which has known values at, -1 and 0. – Anik Patel May 14 '23 at 01:05
-
1$\int_0^1 \frac{\log(1+x)}{x}dx =\frac{\pi^2}{12}$ – Quanto Jun 07 '24 at 08:00
3 Answers
Since $\log(1+x)=\sum_{j=1}^{\infty}\frac{(-1)^{j+1}x^j}{j}$ we have $$I=\sum_{j=1}^{\infty}\frac{(-1)^{j+1}}{j}\int_0^1x^{j-1}=\sum_{j=1}^{\infty}\frac{(-1)^{j+1}}{j^2}=\frac{\pi^2}{12}$$
where the last summation can be calcualted using the well known summation: $\sum_{j=1}^{\infty}\frac{1}{j^2}=\frac{\pi^2}{6}$.
- 9,888
Let $$I = \int^{1}_{0}\frac{\ln(1+x)}{x}dx = \int^{1}_{0}\ln(1+x)\cdot \frac{1}{x}dx$$
Using By parts, We get
$$I = \left[\ln(1+x)\cdot \ln x\right]^{1}_{0}-\int^{1}_{0}\frac{\ln x}{1+x}dx$$
So $$I=0-\int^{1}_{0}\sum^{\infty}_{n=0}(-x)^{n}\ln xdx = \sum^{\infty}_{n=0}(-1)^n\int^{1}_{0}\ln x \cdot x^ndx$$
Again, Using By parts, We get
$$I = -\sum^{\infty}_{n=0}\bigg[(-1)^n\bigg(\ln x \cdot \frac{x^{n+1}}{n+1}\bigg)^{1}_{0}-(-1)^n\int^{1}_{0}\frac{x^{n}}{(n+1)}dx\bigg]$$
So $$I = -\sum^{\infty}_{n=0}\frac{(-1)^n}{(n+1)^2} = \zeta(2)-\frac{\zeta(2)}{4} = \frac{3}{4}\zeta(2)$$
- 56,203
Let $$I=\int_0^1\frac{\ln(x+1)}x dx$$ and $$J=\int_0^1\frac{\ln(1-x)}xdx=-\zeta(2).$$ Then, $$I+J=\int_0^1\frac{\ln(1-x^2)}xdx\\ \stackrel{x^2=t}{=}\frac12\int_0^1\frac{\ln(1-t)}t dt =\frac12 J.$$ Hence, $$I=-\frac12J=\frac12\zeta(2).$$
- 15,712