10

Tried to prove the following facts:

  1. If $B \in M_{n\times n}(\mathbb{C})$ is unitary (i.e. $ B^{-1} = B^{*}$), then:

    • $\forall x\in \mathbb{C}^n :\| Bx \|_2 = \| x \|_2 $

    • $\forall A\in M_{n\times n}(\mathbb{C})$ : $ \| BA \|_F = \| A \|_F $ (where $ \| . \|_F $ denotes Frobenius norm).

  2. $\forall A,B\in M_{n\times n}(\mathbb{C}): \| AB \|_{ \infty} \leq \| A \|_{ \infty}\| B \|_{ \infty} $

In (1),tried to conduct direct algebraic manipulations from the definitions of the norms, but I obtained no results. In (2) the use of definition $ \| B \|_{ \infty} := max\{\frac{\|Bx\|}{\|x\|}: x\in \mathbb{C}^n \setminus \{0\} \}$ and the inequality $\|AB\| \leq \|A\|\|B\|$ gives straightforward result. However, the use of definition $\|B\|\ _{\infty} :=max\{ \sum_{j=1}^{n}|b_{ij}|: i\in \{1,...n\}\}$ does not give direct results.

I would be thankful for hints/advices!

  • Hints: $\left|\left| v \right|\right|_2 = \sqrt{v^\ast v}$ and $\left|\left|A\right|\right|_F = \sqrt{\operatorname{Tr}\left(A^*A\right)}$. – darij grinberg Nov 15 '16 at 21:38

3 Answers3

10

The trick here is to operate with the squares of the norms, rather than with the norms themselves. These squares are given by the appropriate scalar products, whose properties we will use.

Using the Hermitian product, $(x, y)$: $$ \lVert Bx \rVert_{2}^{2} = (Bx, Bx) = (x, B^{*}Bx) = (x, x) = \lVert x\rVert_{2}^{2}. $$ For the Frobenius norm, using the corresponding inner product: $$ \lVert B A\rVert_{F}^{2} = \mbox{tr }[(B\,A)^{*} B\,A] = \mbox{tr }[A^{*} B^{*} B \, A] = \mbox{tr }[A^{*} \, A] = \lVert A\rVert_{F}^{2}. $$

MathMax
  • 195
avs
  • 6,410
  • Now I see. So obvious... By the way, thanks for help! –  Nov 15 '16 at 21:44
  • Sure. Another useful exercise (and far from obvious) is this: in a normed vector space, the norm is given by a scalar product if and only if the norm obeys the parallelogram law. BTW, I consider Halmos's Linear Algebra Problem Book a great source. – avs Nov 15 '16 at 21:59
  • 1
    Have this problem book(it is great). Thanks for additional problem! –  Nov 15 '16 at 22:00
  • What rule allows us to multiply the matrix into the inner product? I know we can do this with scalars, but I hadn't seen it with matrices. – HappyFace May 19 '23 at 16:13
  • @HappyFace, the matrix is not "multiplied into the inner product". The matrix B acts on a vector x, which produces another vector, y=Bx. Next, we take the good old inner product of the vector y with itself: (y,y) = ( Bx, Bx ).

    Unless I am misunderstanding what you are asking?

    – avs May 19 '23 at 17:27
  • I do not understand how this part follows: (,)=(,∗ ). I know (b,b)=(,b* b) for scalar b (part of the definition IIRC), but B here is a matrix. – HappyFace May 20 '23 at 17:11
  • @HappyFace. B is a linear transformation, and B* is the dual transformation of B--I think your difficulty is just not being familiar with that concept. The asterisk denotes, not the complex conjugate, but the dual transformation. In the special case when B = bI, where b is a complex scalar, then it reduces to (x, b* bx), where b* turns out to be the complex conjugate of b.

    See Halmos's book

    – avs May 21 '23 at 18:53
3

$$ ||Bx||_2 = \sum_i\left(\sum_j B_{ij}x_j) \right)^* \left(\sum_k B_{ik}x_k) \right) $$ $$ \\ \left(\sum_j B_{ij}x_j) \right)^* = \sum_j B_{ij}^*x_j^* = \sum_j (B^T_{ji})^*x_j^* = \sum_j B^{-1}_{ji}x_j^* $$ $$ ||Bx||_2 = \sum_i\left(\sum_j B^{-1}_{ji}x_j^* \right)^* \left(\sum_k B_{ik}x_k) \right) \\ = \sum_j\sum_k \left( \sum_iB^{-1}_{ji} B_{ik} \right) x_j^*x_k =\sum_j\sum_k \delta_{jk} x_j^*x_k = \sum_j x_j^*x_k = ||x||_2 $$

The equality for the Frobenius norm follows directly since for any arbitrary $x$ the sum of the quares for each column of $BAx$ matches the sum of the squares for that same column of $Ax$.

Mark Fischler
  • 42,297
0

Let $\mathbb{K} \in \{\mathbb{R},\mathbb{C}\}$ be either the field of real numbers $\mathbb{R}$ or the field of complex numbers $\mathbb{C}$.

Definition (Unitary matrix). A unitary matrix is a square matrix $\mathbf{U} \in \mathbb{K}^{n \times n}$ such that \begin{equation} \mathbf{U}^* \mathbf{U} = \mathbf{I} = \mathbf{U} \mathbf{U}^*. \end{equation}

Definition (Vector $2$-norm). The $2$-norm of a vector $\mathbf{x} \in \mathbb{K}^n$ is the scalar \begin{equation}\textstyle \left\Vert\mathbf{x}\right\Vert_2 := \left(\mathbf{x}^* \mathbf{x}\right)^{\tfrac{1}{2}} = \left(\sum_{i=1}^n \vert \mathbf{x}_i \vert^2\right)^{\tfrac{1}{2}} = \left(\sum_{i=1}^n \overline{x}_i x_i\right)^{\tfrac{1}{2}}. \end{equation}

Proposition. The vector $2$-norm is unitarily invariant. That is, for any $\mathbf{x} \in \mathbb{K}^n$ and any compatible unitary matrix $\mathbf{U} \in \mathbb{K}^{n \times n}$, \begin{equation} \Vert \mathbf{U} \mathbf{x} \Vert_2 = \Vert \mathbf{x} \Vert_2. \end{equation}

Proof. For any $\mathbf{x} \in \mathbb{K}^n$ and unitary $\mathbf{U} \in \mathbb{K}^{m \times n}$, \begin{equation} \Vert \mathbf{U} \mathbf{x} \Vert_2^2 = (\mathbf{U} \mathbf{x})^* (\mathbf{U} \mathbf{x}) = \mathbf{x}^* \mathbf{U}^* \mathbf{U} \mathbf{x} = \mathbf{x}^* \mathbf{I} \mathbf{x} = \mathbf{x}^* \mathbf{x} = \Vert \mathbf{x} \Vert_2^2, \end{equation} so \begin{equation} \Vert \mathbf{U} \mathbf{x} \Vert_2 = \Vert \mathbf{x} \Vert_2. \end{equation}

Definition (Matrix $2$-norm). The $2$-norm of a matrix $\mathbf{A} \in \mathbb{K}^{m \times n}$ is the scalar \begin{equation} \Vert \mathbf{A} \Vert_2 := \max_{\Vert \mathbf{x} \Vert_2 = 1} \Vert \mathbf{A} \mathbf{x} \Vert_2. \end{equation}

Proposition. The matrix $2$-norm is unitarily invariant. That is, for any $\mathbf{A} \in \mathbb{K}^{m \times n}$ and any compatible unitary matrix $\mathbf{U} \in \mathbb{K}^{m \times m}$, \begin{equation} \Vert \mathbf{U} \mathbf{A} \Vert_2 = \Vert \mathbf{A} \Vert_2. \end{equation}

Proof. For any $\mathbf{A} \in \mathbb{K}^{m \times n}$ and unitary $\mathbf{U} \in \mathbb{K}^{m \times m}$, \begin{equation} \Vert \mathbf{U} \mathbf{A} \Vert_2 = \max_{\Vert \mathbf{x} \Vert = 1} \Vert \mathbf{U} \mathbf{A} \mathbf{x} \Vert_2 = \max_{\Vert \mathbf{x} \Vert = 1} \Vert \mathbf{A} \mathbf{x} \Vert_2 = \Vert \mathbf{A} \Vert_2, \end{equation} using the fact that the vector $2$-norm is unitarily invariant. $\qquad \square$

Definition (Frobenius norm). The Frobenius norm of a matrix $\mathbf{A} \in \mathbb{K}^{m \times n}$ is the scalar \begin{equation} \textstyle \Vert \mathbf{A} \Vert_{\mathrm{F}} = \left(\sum_{i,j=1}^{m,n} \vert{a_{ij}}\vert^2\right)^{\tfrac{1}{2}}. \end{equation}

Proposition. Consider a matrix $\mathbf{A} \in \mathbb{K}^{m \times n}$ and let $(\mathbf{a}_j)_{j=1}^n$ be the columns of $\mathbf{A}$, that is, $\mathbf{A}$ has the column partitioning \begin{equation} \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}. \end{equation} Then, the Frobenius norm of $\mathbf{A}$ satisfies \begin{equation} \Vert \mathbf{A} \Vert_{\mathrm{F}}^2 = \sum_{j=1}^n \Vert \mathbf{a}_j \Vert_2^2. \qquad \square \end{equation}

Proposition. The Frobenius norm is unitarily invariant. That is, for any $\mathbf{A} \in \mathbb{K}^{m \times n}$ and any compatible unitary matrix $\mathbf{U} \in \mathbb{K}^{m \times m}$, \begin{equation} \Vert \mathbf{U} \mathbf{A} \Vert_{\mathrm{F}} = \Vert \mathbf{A} \Vert_{\mathrm{F}}. \end{equation}

Proof. Consider a matrix $\mathbf{A} \in \mathbb{K}^{m \times n}$ and unitary matrix $\mathbf{U} \in \mathbb{K}^{m \times m}$. Column partition $\mathbf{A}$ as \begin{equation} \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n\end{bmatrix}. \end{equation} Then, the product \begin{equation} \mathbf{U} \mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n\end{bmatrix} = \begin{bmatrix} \mathbf{U} \mathbf{a}_1 & \mathbf{U} \mathbf{a}_2 & \cdots & \mathbf{U} \mathbf{a}_n \end{bmatrix}. \end{equation} That is, the columns of $\mathbf{U} \mathbf{A}$ are $(\mathbf{U}\mathbf{a}_j)_{j=1}^n$. Thus, by the proposition above and as the vector $2$-norm is unitarily invariant, \begin{equation} \Vert \mathbf{U} \mathbf{A} \Vert_{\mathrm{F}}^2 = \sum_{j=1}^n \Vert{\mathbf{U} \mathbf{a}_j}\Vert_2^2 = \sum_{j=1}^n \Vert \mathbf{a}_j \Vert_2^2 = \Vert \mathbf{A} \Vert_{\mathrm{F}}^2, \end{equation} or \begin{equation} \Vert \mathbf{U} \mathbf{A} \Vert_{\mathrm{F}} = \Vert \mathbf{A} \Vert_{\mathrm{F}}. \qquad \square \end{equation}