I have function $f: A \rightarrow B$ and sets $X \subseteq A$ and $Y \subseteq B$. I need to compute the number of all possible functions $f$ where $f(X) \supseteq Y$.
I know that count of all possible functions where $f(X) \subseteq Y$ is $|Y|^{|X|}|B|^{|A|-|X|}$ . I think that solution is $|B|^{|X|}|B|^{|A|-|X|}$. Am I right?