let A be a banach algebra with identity and $a \in A$.
the spectral radius $a$: $ r(a)= sup \{ \lambda : \lambda \in \sigma(a)\}$
a) if $A$ is a abelian banach algebra, $a,b \in A$, will below terms be correct? $r(ab) \leq r(a) r(b) \\ r(a+b) \leq r(a) +r(b)$
b) say that the map $ r:A\longrightarrow\mathbb{R}\\a\mapsto r(a) $ is upper semicountinuous?