I have a multivariate normal distribution $Y \sim \mathcal{N}(\mu,\Sigma)$ and a non-singular matrix $B$. I'd like to find the distribution of $X = B \cdot Y$.
So far I've written \begin{align*} \mathbb{P}(X \leq a) &=\mathbb{P}(B \cdot Y \leq a) =\mathbb{P}(Y \leq B^{-1} a) = f_Y(B^{-1}a) \\[0.2cm] &= \frac{1}{\sqrt{(2 \pi)^n \det(\Sigma)}} \cdot \exp \Big( -\frac{1}{2} (B^{-1}a - \mu)^T \Sigma^{-1} (B^{-1}a - \mu) \Big). \end{align*}
I think that $X \sim \mathcal{N}(\mu', \Sigma)$, for some $\mu'$, but I have no idea how to show this.
because $$f_Y$$ looks like a pdf and $$\mathbb{P}(B \cdot Y \leq a) $$ looks like a cdf.
– zoli Oct 12 '16 at 12:59