Question:
Let $f:( X,d )\rightarrow ( Y,e )$ be a map between metric spaces, let $U \subseteq X$ and$ V\subseteq Y$.
Show that $V=f\left ( f^{-1}\left ( V \right ) \right )$.
Recall by definition the pre-image of a set V:
$$f^{-1} ( V )=\{ x \in X \mid f ( x ) \in V \}$$
If it helps: $f\left ( x \right )=x^{2}$
$$f^{-1}(\{x\})= \left\{\begin{matrix} \sqrt x, -\sqrt x &x>0 \\ 0 & x=0\\ \emptyset & x<0 \end{matrix}\right.$$
Any help is appreciated.
Thanks in advance.