If a nonzero solution exists with a fixed point $f(x^)=x^$ (with $x^\neq 0$) then you can find it with a series solution $f(x) = \sum_{k=0}^{\infty} \frac{(x-x^)^kf^{(k)}(x^)}{k!}$. You can compute $f'(x^)=f(f(x^))=f(x^)=x^$, $f''(x^)=f'(f(x^))f'(x^)=f'(x^)^2 = (x^)^2$, and so on.
– MichaelJul 25 '16 at 22:06