$$ \text{Let } \left|\sin x - 0\right| < \epsilon. \\ -\epsilon < \sin x < \epsilon \\ \arcsin (-\epsilon) < x < \arcsin (\epsilon) \\ -\arcsin \epsilon < x < \arcsin \epsilon \\ \left|x\right| < \arcsin \epsilon \\ \left|x - 0\right| < \arcsin \epsilon \\ \text{Let } \delta = \arcsin \epsilon. \\ 0 < \left|x - 0\right| < \delta \implies \left|\sin x - 0\right| < \epsilon \\ \lim_{x->0} \sin x = 0 \\ \lim_{x->0} \sin x = \sin 0 \\ \sin x \text{ is continuous at the origin} $$
In particular, is it safe to get from $-\epsilon < \sin x < \epsilon$ to $\arcsin (-\epsilon) < x < \arcsin (\epsilon)$ by applying the inverse function to all sides of the inequality? Can this operation be dangerous for some functions, functions whose inverses don't share a strictly positive or negative relation?