Below is a proof that there are infinitely many primes $mod(1,4)$ using Dirichlet method:
Define a mapping system $\chi_0$ such that
$$\boxed{\sum_p \frac{\chi_0(p)}{p} = \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} + ... = \infty}$$
since the sum of reciprocals of primes diverge.
Define another mapping system $\chi_1$ such that
$$\boxed{\sum_p \frac{\chi_1(p)}{p} = - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} - \frac{1}{11} + \frac{1}{13} + \frac{1}{17} - \frac{1}{19} + ... = O(1)}$$
by comparison with the regular series
$$- \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - \frac{1}{15} + \frac{1}{17} - \frac{1}{19} + ... = \frac{\pi}{4} - 1$$
and using
$$\sum_p \frac{\chi_1(p)}{p} = \log \left(\frac{\pi}{4} - 1\right) + O(1) $$
Then
$$\sum_{p=mod(1,4)} \frac{1}{p} = \frac{1}{5} + \frac{1}{13} + \frac{1}{17} + ...$$
$$=\frac{1}{2}\left(\sum_p \frac{\chi_0(p)}{p} + \sum_p \frac{\chi_1(p)}{p}\right)$$
$$ = \frac{1}{2}\left(\infty + O(1)\right)$$
Hence
$$\boxed{\sum_{p=mod(1,4)} \frac{1}{p} = \infty}$$
and so there are infinitely many primes $mod (1,4)$.
Furthermore, for analysis use
$$\log \sum_{n} \frac{\chi(n)}{n}$$
$$=\log\prod_{p} \frac{1}{1 - \frac{\chi(p)}{p}}$$
by product of unique prime factorization
$$=-\sum_p \log \left(1 - \frac{\chi(p)}{p}\right)$$
$$=\sum_p \left(\frac{\chi(p)}{p} + \frac{\chi^2(p)}{2p^2} + \frac{\chi^3(p)}{3p^3} + ... \right)$$
by Maclaurin series expansion
$$=\sum_p \frac{\chi(p)}{p} + \sum_p \left(\frac{\chi^3(p)}{2p^2} + \frac{\chi^3(p)}{3p^3} + ... \right)$$
$$=\sum_p \frac{\chi(p)}{p} + O(1)$$
Hence
$$\boxed{\sum_p \frac{\chi(p)}{p} =\log \sum_{n} \frac{\chi(n)}{n} + O(1) }$$
where the right hand side is preferable for use in analysis than the left hand side.
E.g. proof that there are infinitely many primes mod (3, 16) using Dirichlet method:
Define 8 mapping systems such that
$$\begin{array} {|r|r|}\hline mod(n,16) & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \chi_0(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \chi_1(n) & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ \hline \chi_2(n) & -i & 1 & 1 & -i & i & -1 & -1 & i \\ \hline \chi_3(n) & i & 1 & 1 & i & -i & -1 & -1 & -i \\ \hline \chi_4(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \hline \chi_5(n) & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ \hline \chi_6(n) & -i & 1 & -1 & i & i & -1 & 1 & -i \\ \hline \chi_7(n) & i & 1 & -1 & -i & -i & -1 & 1 & i \\ \hline \end{array}$$
Then
$$\sum_\chi \left(\sum_p \frac{\chi(p)}{p} \right) $$
$$= \sum_p \frac{1}{p}\left(\sum_\chi \chi(p) \right)$$
$$= \sum_p \frac{1}{p} \left( \chi_0(p) + \chi_1(p) + \chi_2(p) + \chi_3(p) + \chi_4(p) + \chi_5(p) + \chi_6(p) + \chi_7(p)\right)$$
$$ = \sum_{p=mod(3,16)} \frac{1}{p} (8)$$
since contributions from all other primes cancel out completely (i.e. a sieve) by inspecting the table.
Hence
$$ \boxed{\sum_{p=mod(3,16)} \frac{1}{p} = \frac{1}{8}\sum_\chi \sum_p \frac{\chi(p)}{p}}$$
$$ = \frac{1}{8}\sum_\chi \left(\log \sum_{n} \frac{\chi(n)}{n} + O(1) \right)$$
$$= \frac{1}{8} \left( \log \sum_{n} \frac{\chi_0(n)}{n}+ \log \sum_{n} \frac{\chi_1(n)}{n}+ \log \sum_{n} \frac{\chi_2(n)}{n}+ \log \sum_{n} \frac{\chi_3(n)}{n}+ \log \sum_{n} \frac{\chi_4(n)}{n}+ \log \sum_{n} \frac{\chi_5(n)}{n}+ \log \sum_{n} \frac{\chi_6(n)}{n}+ \log \sum_{n} \frac{\chi_7(n)}{n} \right) + O(1)$$
$$= \frac{1}{8} \left( \log \sum_{n} \frac{\chi_0(n)}{n}+ O(1) + O(1)+ O(1)+ O(1)+ O(1)+ O(1)+ O(1)\right) + O(1)$$
$$= \frac{1}{8} \left(\log \sum_{n} \frac{1}{n} \right)+ O(1)$$
since $\chi_0(n)=1$
$$ = \infty$$
since $\sum_{n} \frac{1}{n} = \infty$.
Therefore
$$\boxed{\sum_{p=mod(3,16)} \frac{1}{p} = \infty}$$
and so there are infinitely many primes $mod (3,16)$.