Let $\alpha_1, \alpha_2, \alpha_3$ be the roots of the polynomial $x^3 - x^2 + 2x - 3$ $\in \mathbb{C}[x]$. Calculate $\alpha_1^3 + \alpha_2^3 + \alpha_3^3$.
What to do here exactly? I already calculated the elementary symmetric polynomial identity for $\alpha_1^3 + \alpha_2^3 + \alpha_3^3$ = $(\alpha_1 + \alpha_2 + \alpha_3)^3 - 3(\alpha_1 + \alpha_2 + \alpha_3)(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3) - 6(\alpha_1\alpha_2\alpha_3)$.