We choose $x$ to be along all the imaginary axis. That is,
or $x \in \mathrm{i} (-\infty, \infty)$. Instead of $x$ we want to think of
$\mathrm{i} x$ for $x$ real, and the substitution $s=\mathrm{i} x$.
The operator (ODE) is $Lu=-u''$, with
boundary conditions $\lim_{x \to \pm \infty} u(x) = 0$.
Then the spectral problem has as a Green function, the solution to the equation
\begin{eqnarray*}
-G''(s,\xi,\lambda) - \lambda G(s, \xi, \lambda) =
\delta(s - \xi).
\end{eqnarray*}
The Green function, in terms of $x$ and $y$, is given by
(please see my notes on Green functions)
\begin{equation}
G(x,y, \lambda) =-
\frac{ \mathrm{e}^{-\mathrm{i} \sqrt{\lambda} |x-y|}}
{2 \mathrm{i} \sqrt{\lambda}} .
\end{equation}
where $x,y$ are in the positive real numbers, and in terms of $s=\mathrm{i}x$,
and $t=\mathrm{i} y$,
\begin{eqnarray*}
G(x,y, \lambda) = -
\frac{ \mathrm{e}^{ \sqrt{\lambda} |s-t|}}
{2 \mathrm{i} \sqrt{\lambda}} .
\end{eqnarray*}
We want to compute the right hand side of the following equation:
\begin{eqnarray*}
\delta(s-t) = -\frac{1}{2 \pi \mathrm{i}} \int_{C_{\infty}}
G(s,t,\lambda) d \lambda
\end{eqnarray*}
where the contour $C_{\infty}$ contains all the spectrum (which is located in the imaginary
line). As it is, this function as has a
brunch cut at $0$, so we make the change of variables $\lambda=\mu^2$, $d \lambda=
2 \mu d \mu$, and unfold the integral where now $\mu$ runs from $-\infty$ to
$\infty$ along the imaginary axis. We have then
\begin{eqnarray*}
-\frac{1}{2 \pi \mathrm{i}} \int_{C_{\infty}}
G(s,t,\lambda) d \lambda
&=& -\frac{1}{2 \pi \mathrm{i}} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty}
2 \mu \frac{\mathrm{e}^{ \mu |s -t|}}{2 \mathrm{i}
\mu} d \mu \\
&=&
\frac{1}{2 \pi}
\int_{-\mathrm{i} \infty}^{\mathrm{i} \infty}
\mathrm{e}^{\mu |s -t|} d \mu.
\end{eqnarray*}
We observe that that there is no need for the absolute bars in the exponent (check
this by assuming $|s|>|t|$ and then $|t|>|s|$) so we write
\begin{eqnarray*}
\delta(s-t) = \frac{1}{2 \pi} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty}
\mathrm{e}^{\mu(s-t)} d \mu.
\end{eqnarray*}
At this moment we assume that $u(x)$ is a causal function, or simple
a regular (no causal function) multiplied by the Heaviside function $H(x)$.
Let us now multiply both sides of this equation by $u(x)$ and integrate
over $s$ between $0$ and $\infty$. Then
\begin{eqnarray*}
u(t) = \int_0^{\infty} ds \, u(s) \frac{1}{2 \pi} \int_{-\mathrm{i}\infty}^
{\mathrm{i} \infty}
\mathrm{e}^{\mu(s - t)} d \mu.
= \frac{1}{2 \pi} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty} d \mu
\left ( \int_0^{\infty} ds \, u(s) \mathrm{e}^{\mu s} \right )
\; \mathrm{e}^{-\mu t}
\end{eqnarray*}
We define the expression inside parenthesis as $U(\mu)$, so that we
have the Laplace transform pair:
\begin{eqnarray*}
U(\mu) &=& \int_0^{\infty} ds \, u(s) \mathrm{e}^{\mu s} \\
u(t) &=& \frac{1}{2 \pi} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty} d \mu
U(t) \mathrm{e}^{-t \mu}.
\end{eqnarray*}