1

I'm trying to compute $$\iint_{\mathbb{R}^2} (x^2+y^2+1)^{\frac{-3}{2}} \, dx dy$$

I know that it's a sensible idea to use polar coordinates here and so I want to look at $$\iint_{\mathbb{R}^2} (r^2+1)^{\frac{-3}{2}} r \, dr d\theta$$

What would be my upper limit for $r$ though? Would it be $\infty?$

2 Answers2

1

$$\iint_{\mathbb{R}^2}(x^2+y^2+1)^{-3/2}\,dx\,dy = 2\pi\int_{0}^{+\infty}\frac{\rho\,d\rho}{(\rho^2+1)^{3/2}} = \pi\int_{0}^{+\infty}\frac{du}{(1+u)^{3/2}}=\color{red}{2\pi}. $$

Jack D'Aurizio
  • 361,689
0

With the coordinate transformation $(r,\phi) \rightarrow (r \, \sin \phi, r \, \cos \phi)$ you map $[0,\infty) \times [0,2\pi)$ to $\mathbb{R} \times \mathbb{R}$ so the boundaries in the second formula would be

$$\int_0^{2\pi} d\phi \int_0^\infty dr \ldots$$

As mentioned the the comment your function is not bounded on the unit circle (If a function $f(x)$ is Riemann integrable on $[a,b]$, is $f(x)$ bounded on $[a,b]$?).