51

Sylvester's determinant identity states that if $A$ and $B$ are matrices of sizes $m\times n$ and $n\times m$, then

$$ \det(I_m+AB) = \det(I_n+BA)$$

where $I_m$ and $I_n$ denote the $m \times m$ and $n \times n$ identity matrices, respectively.

Could you sketch a proof for me, or point to an accessible reference?

Bill Dubuque
  • 282,220
Bruce George
  • 2,060

6 Answers6

62

Hint $ $ Work universally, i.e. consider the matrix entries as indeterminates $\:\!\rm a_{\:\!ij},b_{\:\!ij}.\,$ Adjoin them to $\,\Bbb Z\,$ to get the polynomial ring $\rm R = \mathbb Z[a_{\:\!ij},b_{\:\!ij}].\, $ In this polynomial ring $\rm R,$ compute the determinant of $\rm\, (1+A B) A = A (1+BA)\,$ then cancel the nonzero polynomial $\rm\, det(A)\, $ (valid by $\rm R$ a domain). $ $ Extend to non-square matrices by padding appropriately with $0$'s and $1$'s to get square matrices. Note that the proof is purely algebraic - it does not require any topological notions (e.g. (Zariski) density).


Alternatively we may employ Schur decomposition as follows

$$\rm\left[ \begin{array}{ccc} 1 & \rm A \\ \rm B & 1 \end{array} \right]\, =\, \left[ \begin{array}{ccc} 1 & \rm 0 \\ \rm B & 1 \end{array} \right]\ \left[ \begin{array}{ccc} 1 & \rm 0 \\ \rm 0 & \rm 1\!-\!BA \end{array} \right]\ \left[ \begin{array}{ccc} 1 & \rm A \\ \rm 0 & 1 \end{array} \right]\qquad$$

$$\rm\phantom{\left[ \begin{array}{ccc} 1 & \rm B \\ \rm A & 1 \end{array} \right]}\, =\, \left[ \begin{array}{ccc} 1 & \rm A \\ \rm 0 & 1 \end{array} \right]\ \left[ \begin{array}{ccc} \rm 1\!-\!AB & \rm 0 \\ \rm 0 & \rm 1 \end{array} \right]\ \left[ \begin{array}{ccc} 1 & \rm 0 \\ \rm B & 1 \end{array} \right]\qquad$$


See this answer for more on universality of polynomial identities, universal cancellation (before evaluation) and closely relation topics, and see also this sci.math thread on 9 Nov 2007.

Bill Dubuque
  • 282,220
32

(1) Start, for fun, with a silly proof for square matrices:

If $A$ is invertible, then $$ \det(I+AB)=\det A^{-1}\cdot\det(I+AB)\cdot\det A=\det(A^{-1}\cdot(I+AB)\cdot A)=\det(I+BA). $$ Now, in general, both $\det(I+AB)$ and $\det(I+BA)$ are continuous functions of $A$, and equal on the dense set where $A$ is invertible, so they are everywhere equal.

(1) Now, more seriously:

$$ \det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix} \det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} =\det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix}\begin{pmatrix}I&B\\\\0&I\end{pmatrix} =\det\begin{pmatrix}I&0\\\\A&AB+I\end{pmatrix} =\det(I+AB) $$

and

$$ \det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} \det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix} =\det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} \begin{pmatrix}I&-B\\\\A&I\end{pmatrix} =\det\begin{pmatrix}I+BA&0\\\\A&I\end{pmatrix} =\det(I+BA) $$

Since the leftmost members of these two equalities are equal, we get the equality you want.

14

We will calculate $\det\begin{pmatrix} I_m & -A \\ B & I_n \end{pmatrix}$ in two different ways. We have $$ \det\begin{pmatrix} I_m & -A \\ B & I_n \end{pmatrix} = \det\begin{pmatrix} I_m & 0 \\ B & I_n + BA \end{pmatrix} = \det(I_n + BA). $$ On the other hand, $$ \det\begin{pmatrix} I_m & -A \\ B & I_n \end{pmatrix} = \det\begin{pmatrix} I_m+AB & 0 \\ B & I_n \end{pmatrix} = \det(I_m + AB). $$

martini
  • 86,011
1

here is another proof of $det(1 + AB) = det(1+BA).$ We will use the fact that the nonzero eigen values of $AB$ and $BA$ are the same and the determinant of a matrix is product of its eigenvalues. Take an eigenvalue $\lambda \neq 0$ of $AB$ and the coresponding eigenvector $x \neq 0.$ It is claimed that $y = Bx$ is an eigenvector of $BA$ corresponding to the same eignevalue $\lambda.$
For $ABx = Ay = \lambda x \neq 0,$ therefore $y \neq 0.$ Now we compute $BAy = B(ABx) = B(\lambda x) = \lambda y.$ We are done with the proof.

abel
  • 43
  • 3
    You need to show further that a non-zero eigenvalue has the same algebraic multiplicity for both $AB$ and $BA$. Only after that can you conclude the proof. – me10240 Sep 19 '19 at 16:02
0

Here's a determinant free proof.


Lemma: Let $A$ be an $m\times n$ matrix and $B$ be an $n\times m$ matrix over some field $F$. If $\lambda\,(\neq 0)\in F$ then $\dim\ker(\lambda I_m-AB)^k = \dim\ker(\lambda I_n-BA)^k$ for all $k\in\mathbb N$.

Proof:

Consider this linear map, which is in essence, restriction of $B$ to a subspace of its domain.

$\begin{array}{ccc}T_1:&\ker(\lambda I_m-AB)^k& \longrightarrow & \ker(\lambda I_n-BA)^k\\ &v&\longmapsto&Bv\end{array}\tag*{}$

Show that $T_1$ is injective. Well that's easy, just show that $\ker T_1$ is trivial.

Let $v\in\ker(T_1)\subseteq \ker(\lambda I_m-AB)^k$ then we have $T_1(v)=Bv =0$.

Also, $(\lambda I_m-AB)^k\,v=0$

$ \displaystyle\implies \left(\lambda^k I_m + \sum_{i\,=\,1}^k\binom{k}i\lambda^{k-i}(-AB)^i\right)v=0$

$\displaystyle \implies \lambda^k\, v - \left(\sum_{i\,=\,1}^k\binom{k}i\lambda^{k-i}(-AB)^{i-1}A\right)\!Bv=0$

$\displaystyle\implies \lambda^k \,v = 0$

$\implies v=0\quad\because\lambda\neq 0$

Thus, $v\in\ker T_1\implies v=0$.

Using first isomorphism theorem on $T_1$, we see that $\ker(\lambda I_m-AB)^k$ is isomorphic to some subspace of $\ker(\lambda I_n-BA)^k$.

$\therefore \dim\ker(\lambda I_m-AB)^k\leq \dim\ker(\lambda I_n-BA)^k$.

Likewise define,

$\begin{array}{ccc}T_2:&\ker(\lambda I_n-BA)^k& \longrightarrow & \ker(\lambda I_m-AB)^k\\ &w&\longmapsto & Aw\end{array}\tag*{}$

Show that $T_2$ is injective.

It follows that $\dim\ker(\lambda I_n-BA)^k\leq \dim\ker(\lambda I_m-AB)^k$.

Hence, we conclude that $\dim\ker(\lambda I_m-AB)^k = \dim\ker(\lambda I_n-BA)^k$.


Conclusions drawn from the lemma:

  • If $\lambda\neq 0$ is an eigenvalue of $AB$ then $\lambda$ is also an eigenvalue of $BA$.
  • Generalized eigenspaces w.r.t. $\lambda$ of $AB$ and $BA$ have same dimension so $\lambda$ has same algebraic multiplicity in both the characteristic polynomials $\chi_{AB}$ and $\chi_{BA}$.

Considering $AB$ and $BA$ as matrices over a field in which both their characteristic polynomials split and using the above argument, we conclude that $\chi_{AB}(x)$ and $\chi_{BA}(x)$ are same except for multiplicity of the factor $(x-0)$.

Thus, $x^{n}\,\chi_{AB}(x) = x^{m}\,\chi_{BA}(x)$. (This balances out the degree on both sides.)

We have $x^{n}\det(I_m-AB)=x^{m}\det(I_n-BA)$.

Now, Sylvester's determinant equality is a particular case of $x=-1$. $\blacksquare$

Nothing special
  • 3,690
  • 1
  • 7
  • 27
0

Since this thread continues to see action, I guess maybe it's worth noting in passing that this can also be proved using the box product from mixed exterior algebra (at least over fields of characteristic zero): $$\begin{align*} \det(AB+I_m)&=\sum_{k=0}^m\mathop{\mathrm{tr}}\bigl(\,(AB)^{(k)}\mathbin{\square}I_m^{(m-k)}\,\bigr)\\ &=\sum_{k=0}^m\mathop{\mathrm{tr}}\bigl(\,(AB)^{(k)}\,\bigr)\\ &=\sum_{k=0}^n\mathop{\mathrm{tr}}\bigl(\,(BA)^{(k)}\,\bigr)\\ &=\sum_{k=0}^n\mathop{\mathrm{tr}}\bigl(\,(BA)^{(k)}\mathbin{\square}I_n^{(n-k)}\,\bigr)\\ &=\det(BA+I_n) \end{align*}$$ Here $M^{(k)}$ denotes the $k\times k$ compound matrix of $M$ consisting of $k\times k$ minor determinants.

blargoner
  • 3,501