1

I'm trying to prove the following statement

Show that the set ${\{(x,w) \in \mathbb R^n\times \mathbb R^m \mid Ax \leq0, c^T x >0,w^TA=c, w\geq0 \}}$ is empty, where $A\in \mathbb R^{m\times n}$ and $ c \in \mathbb R^n$ are given.

hardmath
  • 37,715
user00
  • 55

1 Answers1

3

Suppose that it is non-empty and let $(x,w) \in \Bbb R^n \times \Bbb R^m$ satisfy the property. Then (where for a vector $v$, $(v)_i$ denotes the $i$-th component):

$$w^T A x= \sum_{i=1}^m (Ax)_i (w)_i$$

but $(Ax)_i \ge 0$ and $(w)_i \le 0$ for all $i$, so $w^TAx \le 0$.

On the other hand, $w^T Ax = cx > 0$.