For a positive real numbers $a_1, a_2,.... a_p$ what is
$ \lim_{n\to \infty}(\frac{ (a_1^n+a_2^n+....+a_p^n)}{p})^\frac{1}{n}$
Now I apply Cauchy root test on this and i evaluated $ \lim_{n\to \infty} \frac{a_{n+1}}{a_n}$ it comes out
$ \lim_{n\to \infty}$ $ \frac{(a_1^{n+1}+a_2^{n+1}+....+a_p^{n+1})}{(a_1^{n}+a_2^{n}+....+a_p^{n}})$.
then i apply L hospital rule?
Am i right?