The relation ${\rm im}{(AA^T)}\subseteq{\rm im}{(A)}$ is trivial, so we only show that ${\rm im}{(A)}\subseteq{\rm im}{(AA^T)}$.
Before starting, we claim that $\ker(A)^\perp\subseteq {\rm im}(A^T).$
If otherwise $x\notin{\rm im}(A^T)$, then there exists
$x'\in{\rm im}(A^T)^\perp$ such that $ x\cdot x'\ne0$.
In fact, we have $x'\in\ker (A)$ because $A^TAx'\in{\rm im}(A^T)$, which implies
$$Ax'\cdot Ax'=(x')^TA^TAx'=x'\cdot A^TAx'=0\quad\Longrightarrow\quad
Ax'={\it 0}.$$
Thus $x\notin \ker (A)^\perp$, and the claim is proved. Now,
given $y\in{\rm im}{(A)}$, there exists $x\in\mathbb{R}^m$ such that $y=Ax$.
Also, we may write $x=x_1+x_2$, where $x_1\in\ker{(A)}$ and $x_2\in\ker{(A)}^\perp$.
By the claim, $x_2=A^Tx_2'$ for some $x_2'\in\mathbb{R}^n$.
Therefore
\begin{align}
y
=A(x_1+x_2)
=A(x_1+A^Tx_2')
=Ax_1+AA^Tx_2'
=AA^Tx_2',
\end{align}
and hence $y\in{\rm im}(AA^T)$.