This isn't an answer to OP's question, but more of an extended comment.
OP's contention that 'In France "positive" and "negative" include zero.' appears debatable. French Wikipedia states "Un nombre positif est un nombre qui est supérieur à zéro, par exemple 3 ou e." So, naively, it would seem common parlance in France aligns with common parlance elsewhere: zero isn't positive because positive means numbers bigger than zero. I quote further "En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis1 précise : « Les nombres négatifs, les nombres positifs et le zéro forment l'ensemble des nombres relatifs ». L'Académie française, dans la neuvième édition de son dictionnaire précise quant à elle qu'un nombre positif est un nombre « supérieur à zéro et qui peut être précédé du signe + »." See also the French Academy's dictionary entry for "positif".
If even the French Academy says zero isn't positive, we should probably take note. But there is wiggle room as regards what "supérieur à" means. In common parlance and early years French education it seems that this corresponds to ">" but in more advanced mathematical works there is a tendency to redefine it as ">=". Hence ambiguity may still lurk.
French Wikipedia suggests zero is "generally excluded" [from being positive or negative] aside from in "textes mathématiques" i.e. mathematical works, where there seems to be a tendency to redefine positive and negative to include zero. Bourbaki would fall into this category. This is presumably for convenience in certain areas of mathematics, at the possible cost of being unintuitive and/or confusing to the casual reader. French Wikipedia also says that (in France, specifically) "En mathématiques, l'adjectif supérieur est compris au sens large", in other words corresponding to ">=", but further notes "Cet usage est relativement récent." which might lend support to my use of the word "redefine" above. This is part of a section of the page dealing with the varying classification of zero in various French-speaking countries. On the other hand, the dictionary of the French Academy states "En mathématiques, « a est supérieur à b » s’écrit a>b."
It all appears a little messy and, as I am not French, I wonder if someone who is might care to shed further light.