Implication from gradient to Hessian holds true for a twice differentiable function. From the definition of the Hessian of a twice differentiable function $f(\mathbf{x})$, we know that for any vector $\mathbf{v}\in\mathcal{R}^n$
\begin{align}
\nabla^2f(\mathbf{x})\mathbf{v}&=\lim_{h\to0}\frac{\nabla f(\mathbf{x}+h\mathbf{v})-\nabla f(\mathbf{x})}{h}\\
\implies ||\nabla^2f(\mathbf{x})\mathbf{v}||&\leq\lim_{h\to0}\frac{||\nabla f(\mathbf{x}+h\mathbf{v})-\nabla f(\mathbf{x})||}{|h|}\\
\implies ||\nabla^2f(\mathbf{x})\mathbf{v}||&\leq\lim_{h\to0}L\frac{|h|||\mathbf{v}||}{|h|}\\
\implies ||\nabla^2f(\mathbf{x})\mathbf{v}||&\leq L||\mathbf{v}||
\end{align}
Since this is true for any $\mathbf{v}$, it is also true for the eigenvectors for matrix $\nabla^2f(\mathbf{x})$. If $\mathbf{v}$ is such an eigenvector
\begin{align}
||\nabla^2f(\mathbf{x})\mathbf{v}||&=||\lambda\mathbf{v}||\leq L ||\mathbf{v}||\\
\implies |\lambda|\leq L
\end{align}
So all eigenvalues are upper bounded by $L$