The proof is not trivial and I happen to see it a while ago.
What follows is the proof for the general case with the error expressed in terms of the $\ell_q$-quasinorm of the difference vector assuming only $s$ largest elements of the vector $\boldsymbol{\theta}=(\theta_1,\theta_2,\cdots,\theta_M)$ if $\left\|\boldsymbol{\theta}\right\|_p\le1$.
Reorder $\boldsymbol{\theta}$ to get $\boldsymbol{\theta}^*=(\theta^*_1,\theta^*_2,\cdots,\theta^*_M)$ such that $\theta^*_1\ge\theta^*_2\ge\cdots\ge \theta^*_M$. Define $x_j\triangleq (\theta^*_j)^p$. We are going to prove that
$$\left \| \boldsymbol{\theta}-\boldsymbol{\theta}_s \right \|_q\le \frac{c_{p,q}}{s^{1/p-1/q}}\left\|\boldsymbol{\theta}\right\|_p$$
For simplicity assume the $q$-th power
$$\left \| \boldsymbol{\theta}-\boldsymbol{\theta}_s \right \|^q_q\le \frac{c^q_{p,q}}{s^{q/p-1}}\left\|\boldsymbol{\theta}\right\|^q_p$$
The first $s$ terms of the LHS are zero. Dividing both sides to $\left\|\boldsymbol{\theta}\right\|^q_p$ and given $x_1+x_2+\cdots+x_M\le1$, it is equivalent to prove that
$$x^{q/p}_{s+1}+x^{q/p}_{s+2}+\cdots+x^{q/p}_{M}\le \frac{c^q_{p,q}}{s^{q/p-1}} \hspace{2cm}(1)$$
with $r=q/p>1$, we are looking for the maximum of the convex function
$$f(x_1,x_2,\cdots,x_M)=x^r_{s+1}+x^r_{s+2}+\cdots+x^r_{M}$$ over a convex polygon $$\mathcal{C}=\{(x_1,\cdots,x_M)\in\mathbb{R}^N:\, x_1\ge \cdots \ge x_M \ge 0, \,x_1+x_2+\cdots+x_M\le1\}$$
The maximum is on one of the vertices of the polygon. So we check different vertices:
If $x_1=\cdots=x_M=0$ then $f=0$.
If $x_1=\cdots=x_k>x_{k+1}=\cdots=x_M=0$, for some $k$ such that
$1<k<s$ then $f=0$.
If $x_1=\cdots=x_k>x_{k+1}=\cdots=x_M=0$, for some $k$ such that
$s+1<k<N$, then $x_1=\cdots=x_k=1/k$ and
$f(x_1,x_2,\cdots,x_M)=\frac{k-s}{k^r}$.
So we need to find the $k$ that maximizes $g(k)=\frac{k-s}{k^r}$.
It would be $k^*=\frac{rs}{r-1}$. Therefore, we get $$f\le g(k^*)=\frac{1}{r}\left(1-\frac{1}{r}\right)^{r-1}\frac{1}{s^{r-1}}=\frac{c^q_{p,q}}{s^{q/p-1}}$$ with $$c_{p,q}=\left[\left(\frac{p}{q}\right)^{p/q}\left(1-\frac{p}{q}\right)^{1-p/q}\right]^{1/p}$$
which yields $(1)$. Note that the question is not stated correctly and completely.