I see the question is already answered, so I'll present a trick that can help later. I'll break the problem into two sections, even and odd powers, this allows us to use symmetry arguments.
Odd Power Solution:
By symmetry, the odd powers will go to zero (i.e. integrating an even function against an odd function will result in zero over $\mathbb R$), so $$\boxed{\mathbb E[x^{2n+1}] = 0} \ \ \ (\text{s.t. } n=0,1,2,...)$$
Even Power Solution: I'll work generally $X \sim N(0,\Sigma)$.
$$
\mathbb E[X^{2n}] = \frac{1}{\sqrt{2\pi \Sigma}}\int_{-\infty}^\infty x^{2n} e^{-x^2 / 2\Sigma} dx
$$
If we let $\Delta := -1/2\Sigma$, then we can rewrite the integral as
$$
= \frac{1}{\sqrt{2\pi \Sigma}}\int_{-\infty}^\infty x^{2n} e^{x^2 \Delta} dx
$$
but notice this can be rewritten as a lot of derivatives on $\Delta$
$$
\begin{align}
& = \frac{1}{\sqrt{2\pi \Sigma}}\int_{-\infty}^\infty \frac{\partial^n}{\partial \Delta^n} e^{x^2 \Delta} dx \\
& = \frac{1}{\sqrt{2\pi \Sigma}}\frac{\partial^n}{\partial \Delta^n} \int_{-\infty}^\infty e^{x^2 \Delta} dx \\
& = \frac{1}{\sqrt{2 \Sigma}}\frac{\partial^n}{\partial \Delta^n} (-\Delta)^{-1/2}\\
& = \frac{(-1)^n}{\sqrt{2 \Sigma}} (-\Delta)^{-\tfrac{1}{2} - n} \frac{\Gamma(\tfrac 1 2)}{\Gamma(\tfrac 1 2 - n)}\\
& = \frac{(-1)^n}{\sqrt{2 \Sigma}} (-\Delta)^{-\tfrac{1}{2} - n} \frac{\Gamma(\tfrac 1 2)}{\Gamma(\tfrac 1 2 - n)} \\
& = (-1)^n (2 \Sigma)^{n} \frac{\Gamma(\tfrac 1 2)}{\Gamma(\tfrac 1 2 - n)}
\end{align}
$$
Hence
$$
\boxed{\mathbb E[X^{2n}] = (- 2 \Sigma)^{n} \frac{\Gamma(\tfrac 1 2)}{\Gamma(\tfrac 1 2 - n)}} \ \ \ (\text{s.t. } {n= 1,2,3,...})
$$
One can check you recover the @heropup's answer.