Given: $ S = \sum_{i=1}^{n-1}{i! \over n!} $
How would I find the sum for an arbitrarily large $n$ ?
Example: $n=5$
$ S = \frac{1!}{5!} + \frac{2!}{5!} + \frac{3!}{5!} + \frac{4!}{5!} = 0.275 $
Given: $ S = \sum_{i=1}^{n-1}{i! \over n!} $
How would I find the sum for an arbitrarily large $n$ ?
Example: $n=5$
$ S = \frac{1!}{5!} + \frac{2!}{5!} + \frac{3!}{5!} + \frac{4!}{5!} = 0.275 $