I have found interesting results from integrals in the form: $$I=\int_0^\infty \frac{f(a,x)}{e^{2\pi x}-1}\text{d}x$$
A few examples of interesting functions here are:
$$f(a,x)=\sin(ax)\implies I=\frac{1}{4}\coth \frac{a}{2}-\frac{1}{2a}$$
and... $$f(a,x)=2\arctan (x/a)\implies I=\log\Gamma(a)-a\log a+a-\frac{1}{2}\log \frac{2\pi}{a}$$
to even...
$$f(a,x)=\frac{2\sin(a \arctan x)}{(x^2+1)^{a/2}}\implies I= \zeta(a)-\frac{1}{2}-\frac{1}{a-1}$$
Does there exist a non-trivial function $f$ such that $I=\operatorname{Bi} (a)+\text{some extra stuff}$?
Non-trivial means that you can't have a factor of the numerator being $(e^{2\pi x} -1)$