8

Find $B$ if $A=e^B$ and $A=\begin{bmatrix} 2&1&0\\ 0&2&0\\ 0&0&4\\ \end{bmatrix}$.

Besides, I would be very happy if give some general remark(Best approach). I have seen the wiki article on log of a matrix but it was too complicated(for me).

marya
  • 775

2 Answers2

8

You can make use of the block structure of $A$: $$ A = \begin{pmatrix} C & 0 \\ 0 & 4 \end{pmatrix} = e^B = \sum_{k=0}^\infty \frac{1}{k} B^k \Rightarrow B = \begin{bmatrix} D & 0 \\ 0 & x \end{bmatrix} $$ so we can assume $4 = e^x \Rightarrow x = \ln(4)$. For the block matrices we get $$ C = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = e^D = \sum_{k=0}^\infty \frac{1}{k!} D^k $$ and try an upper triangular matrix $$ D = \begin{pmatrix} y & z \\ 0 & y \end{pmatrix} $$ and get the powers $$ D^2 = \begin{pmatrix} y & z \\ 0 & y \end{pmatrix} \begin{pmatrix} y & z \\ 0 & y \end{pmatrix} = \begin{pmatrix} y^2 & 2 y z \\ 0 & y^2 \end{pmatrix} \\ D^3 = \begin{pmatrix} y^2 & 2 y z \\ 0 & y^2 \end{pmatrix} \begin{pmatrix} y & z \\ 0 & y \end{pmatrix} = \begin{pmatrix} y^3 & 3 y^2 z \\ 0 & y^3 \end{pmatrix} \\ \vdots \\ D^k = \begin{pmatrix} y^k & k y^{k-1} z \\ 0 & y^k \end{pmatrix} \quad (k \ge 1) $$ which suggest $$ C = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = e^D = \begin{pmatrix} e^y & e^y z \\ 0 & e^y \end{pmatrix} $$ so $y = \ln(2)$ and $z = 1/e^y = 1/2$. This gives $$ B = \begin{pmatrix} \ln(2) & 1/2 & 0 \\ 0 & \ln(2) & 0 \\ 0 & 0 & \ln(4) \end{pmatrix} $$

mvw
  • 35,114
  • @ mvw , in fact there is a unique real solution. To prove that, you must prove the implication in line 2 and the fact that $D$ is necessarily upper-triangular. –  Dec 17 '15 at 14:53
  • I used without proof that diagonal matrices are closed under matrix addition, matrix multiplication and multiplication with a scalar. The same for upper triangular matrices. The powers of $D$ might be proofed by induction and the result for $C$ by comparing component-wise. The given matrix is a lucky case where one can calculate the result like above. – mvw Dec 17 '15 at 19:12
  • Yes I agree. That I wanted to say is that $B,D$ are necessarily in the above form because $AB=BA$ and $CD=DC$. –  Dec 17 '15 at 19:42
1

Find a general expression for $(A-2I)^n$ and apply the power series for $\log x$ in powers of $(x-2).$

Justpassingby
  • 10,149