Question
Let $\xi_{19} \in G_{19}$ be a primitive root of unity. Find $\Re\sum_{k=1}^9\xi_{19}^{k^2}$.
Attempt
I'm having doubts about how I'm solving this exercise, this is what I did:
$$ \Re\left(\sum_{k=1}^9\xi_{19}^{k^2}\right)=\sum_{k=1}^9\Re\left(\xi_{19}^{k^2}\right)\\ =\Re\xi^1+\Re\xi^4+\Re\xi^9+\Re\xi^{16}+\Re\xi^{25}+\Re\xi^{36}+\Re\xi^{49}+\Re\xi^{64}+\Re\xi^{81}\\ =\Re\xi^1+\Re\xi^4+\Re\xi^9+\Re\xi^{-3}+\Re\xi^{6}+\Re\xi^{-2}+\Re\xi^{-8}+\Re\xi^{7}+\Re\xi^{5}\\ =\Re\xi^1+\Re\xi^4+\Re\xi^9+\Re (\overline\xi)^{3}+\Re\xi^{6}+\Re(\overline\xi)^{2}+\Re(\overline \xi)^{8}+\Re\xi^{7}+\Re\xi^{5} $$
Also, using $\Re(z)=\Re(\overline z)$, the sum is then simplified to:
$$\Re \sum_{k=1}^{9}\xi^i=\Re \frac {\xi^{10}-\xi}{\xi-1} .$$
Is what I did thus far correct? Can this be simplified further?