My Question: Let $\Delta(a_n)$ be defined by $$(a_n)\in \Delta(a_n)\iff \forall n\in\mathbb N: |\epsilon_n| \le |a_n|$$
I guess it is very likely that this notation is already used in mathematical literature. Can you provide a reference for it, please?
Reason for my question: The big O notation $O(a_n)$ has two equivalent definitions (for strictly positive sequences $(a_n)$):
- $(\epsilon_n) \in O(a_n) \iff \exists C_\forall > 0\,\forall n\in \mathbb N: |\epsilon_n| \le C_\forall |a_n|$
- $(\epsilon_n) \in O(a_n) \iff \exists C_\infty > 0\,\forall n\in \mathbb N: \limsup_{n\to\infty} \frac{|\epsilon_n|}{|a_n|} \le C_\infty$
Thus one can state the convergence speed with the big O notation but not an estimate for the error (because $C_\forall$ and $C_\infty$ are not known). To state $C_\infty$ I want to use the big Psi notation. For $C_\forall$ I want to use $\Delta(\cdot)$ because $$(\epsilon_n)\in\Delta(C_\forall a_n) \iff \forall n\in\mathbb N: |\epsilon_n| \le C_\forall |a_n|$$ Now I am interested wether this notation is already used.