Let $a\in \mathbb{R}$ be fixed, and $f:\mathbb{R}\rightarrow \mathbb{R}$ a Lebesgue integrable function. Define $F:\mathbb{R}\rightarrow \mathbb{R}$ by $$F(x)=\int_a^xf(t)\mathrm{d}t$$ for all $t\in \mathbb{R}$. Prove that $F$ is continuous.
Using the definition of continuity involving convergent sequences, for $x_0\in \mathbb{R}$, I take any sequence $\lbrace x_n \rbrace$ such that $x_n \rightarrow x_0$ as $n\rightarrow \infty$. Then I need to prove that $F(x_n)\rightarrow F(x)$, i.e., $$\lim_{n\to \infty}\int_a^{x_n}f(t)\mathrm{d}t=\int_a^xf(t)\mathrm{d}t$$
I know that, if $m$ is the Lebesgue measure, then $$\lim_{n\to \infty}\int_a^{x_n}f(t)\mathrm{d}t=\lim_{n\to \infty}\int_{-\infty}^{\infty}\chi_{[a,x_n]}f\mathrm{d}m$$
Since $f$ is integrable by assumption, this implies $|f|$ is integrable as well. By the Dominated Convergence Theorem, $|\chi_{[a,x_n]}(t)f(t)|\leq |f(t)|$, so we interchange the limit and integral: $$\lim_{n\to \infty}\int_a^{x_n}f(t)\mathrm{d}t=\int_{-\infty}^{\infty}\lim_{n\to \infty}\chi_{[a,x_n]}f\mathrm{d}m$$
If I can show that $\lim_{n\to \infty}\chi_{[a,x_n]}(t)=\chi_{[a,x_0]}(t)$, then I am done, but this is not immediately obvious to me, nor is a proof of it.